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ABSTRACT
This article is motivated by the lack of flexibility in Bayesian quantile regres-
sion for ordinal models where the error follows an asymmetric Laplace (AL)
distribution. The inflexibility arises because the skewness of the distribution is
completely specified when a quantile is chosen. To overcome this shortcom-
ing, we derive the cumulative distribution function (and the moment-
generating function) of the generalized asymmetric Laplace (GAL)
distribution � a generalization of AL distribution that separates the skewness
from the quantile parameter � and construct a working likelihood for the
ordinal quantile model. The resulting framework is termed flexible Bayesian
quantile regression for ordinal (FBQROR) models. However, its estimation
is not straightforward. We address estimation issues and propose an efficient
Markov chain Monte Carlo (MCMC) procedure based on Gibbs sampling
and joint Metropolis�Hastings algorithm. The advantages of the proposed
model are demonstrated in multiple simulation studies and implemented to
analyze public opinion on homeownership as the best long-term investment in
the United States following the Great Recession.
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1. INTRODUCTION
Quantile regression, proposed by Koenker and Bassett (1978), models the condi-
tional quantiles of the dependent variable as a function of the covariates. This
method is particularly useful if interest lies in the outer regions of the conditional
distribution and/or the data violates the standard assumptions of mean regres-
sion (e.g., the presence of heteroscedasticity, existence of outliers, and so on).
Since its introduction, the concept has gained considerable attention from
researchers worldwide and across ideologies. Within the frequentist econometrics/
statistics literature, the advantages of quantile regression estimators are well
studied and the computational challenges pertaining to optimizing a
non-differentiable loss/objective function have been adequately dealt with. A
valuable source is the study by Koenker (2005) and references therein. The
development of Bayesian quantile regression faced an impediment since errors
in quantile regression were not assumed to follow any distribution (necessary for
writing the likelihood). About two decades later, Koenker and Machado (1999)
noted that the quantile loss function appears in the exponent of an asymmetric
Laplace (AL) distribution (Kotz, Kozubowski, & Podgorski, 2001; Yu &
Zhang, 2005), thus facilitating the construction of a parametric likelihood. This
distribution was utilized by Yu and Moyeed (2001) to propose a Bayesian
method for estimating quantile regression in linear models. The estimation algo-
rithm was further refined by Tsionas (2003), Reed and Yu (2009), and recently
Kozumi and Kobayashi (2011) proposed a Gibbs sampling algorithm, where
they exploit the normal-exponential mixture representation of the AL distribu-
tion. The AL likelihood has been utilized to develop algorithms for Bayesian
quantile regression in Tobit models (Kozumi & Kobayashi, 2011; Yu &
Stander, 2007), Tobit models with endogenous covariates (Kobayashi, 2017),
censored models (Reich & Smith, 2013), censored dynamic panel data models
(Kozumi & Kobayashi, 2012), count data models (Lee & Neocleous, 2010), and
mixed-effect or longitudinal data models (Geraci & Bottai, 2007; Luo, Lian, &
Tian, 2012).

Quantile regression in ordinal models is different since the dependent variable
takes discrete and ordered values (which has no cardinal interpretation) and
does not yield continuous quantiles. Ordinal outcomes typically arise as response
to surveys, and applications are common in economics, finance, marketing, and
the social sciences. Similar to the continuous case, interest in ordinal quantile
regression is aimed to provide a much richer view of the heterogeneous effect of
the covariates on the outcomes. However, estimation is more challenging. A fre-
quentist approach using simulated annealing was proposed by Zhou (2010).
Bayesian estimation of ordinal quantile regression was introduced by Rahman
(2016) and extended to longitudinal data models by Alhamzawi and Ali (2018).
A special case of ordinal model is the binary model, where the outcome variable
is dichotomous (i.e., takes only two values, typically coded as 1 for “success”
and 0 for “failure”). Bayesian quantile regression in binary models was proposed
by Benoit and Poel (2010) and employed to study the mode of transportation to
work. Rahman and Vossmeyer (2019) extended Bayesian quantile regression to
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binary longitudinal outcomes and proposed an efficient Markov chain Monte
Carlo (MCMC) algorithm for its estimation. The Bayesian ordinal quantile
regression model has been utilized in a wide variety of studies including evalua-
tion of credit risk (Miguéis, Benoit, & Poel, 2013), educational attainment
(Rahman, 2016), public opinion on tax policy (Rahman, 2016), public opinion
on nuclear power plants operation (Omata, Katayama, & Arimura, 2017), and
illness severity (Alhamzawi & Ali, 2018).

The list of articles on Bayesian quantile regression mentioned above,
although incomplete, clearly affirm that the AL distribution has played a crucial
role in the development of Bayesian quantile regression. However, the AL distri-
bution poses a critical limitation since a single parameter defines both the quan-
tile and the skewness of the distribution. In addition, the mode of the
distribution is always fixed at the location parameter value for all quantiles. To
overcome these drawbacks, Yan and Kottas (2017) proposed the probability
density function (pdf) of the generalized asymmetric Laplace (GAL) distribution
by introducing a shape parameter into the mean of the normal kernel in the AL
mixture representation. The GAL distribution uses different parameters for
quantile and skewness and thus adds much-needed flexibility for Bayesian quan-
tile regression. They utilized the GAL pdf and proposed algorithms for Bayesian
quantile estimation of linear models, Tobit models, and regularized quantile
regression.

In this chapter, we present a derivation of the GAL pdf from the mixture
representation and both introduce and derive the cumulative distribution func-
tion (cdf) and the moment-generating function (mgf) of the GAL distribution.
The GAL density and the GAL cdf are utilized to introduce an estimation
method for the flexible Bayesian quantile regression in ordinal (FBQROR) mod-
els. Estimation of ordinal models, unlike linear models, is more challenging since
identification restrictions and sampling of cut-points have to satisfy the ordering
constraints. Moreover, through careful transformation of the mixture variables
and joint sampling of the scale and shape parameters, we are able to achieve
low autocorrelation in our MCMC draws. This result is a substantial improve-
ment compared to the extremely high autocorrelation reported by Yan and
Kottas (2017). Our sampling scheme can therefore improve the algorithm for
Bayesian quantile regression in linear, Tobit, and regularized regression models
as presented by Yan and Kottas (2017).

We illustrate the proposed methodology in two simulation studies where the
errors are generated from a symmetric (logistic) distribution and an asymmetric
(chi-square) distribution. The results show that the FBQROR model can main-
tain the actual skewness of the data across all considered quantiles.
Furthermore, the FBQROR models can provide better model fit compared with
the fit obtained from Bayesian quantile regression in ordinal (BQROR) models
assuming an AL distribution. Finally, we implement our FBQROR model in an
application related to the recent housing crisis and the Great Recession
(December 2007�June 2009). Specifically, we analyze how various socioeco-
nomic and demographic factors and exposure to financial distress are associated
with differences in views on the financial benefits of homeownership following
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the Great Recession. The results increase our understanding and offer new
insights which may be important for policymakers and researchers interested in
the US housing market.

The remainder of the chapter is organized as follows. Section 2 presents some
fundamental properties of the GAL distribution. Section 3 presents the
FBQROR model and its estimation procedure. Section 4 illustrates the algo-
rithm in two simulation studies, and Section 5 implements the algorithm to
examine US public opinion on homeownership. Section 6 presents some con-
cluding remarks.

2. THE GAL DISTRIBUTION
The GAL distribution is obtained by introducing a shape parameter into the
mean of the normal kernel in the normal-exponential mixture representation of
the AL distribution and mixing with respect to a half-normal distribution. This
hierarchical representation allows the skewness and mode to vary for a given
quantile/percentile and hence provides the much-needed flexibility for Bayesian
quantile regression.

Suppose Y is a random variable that has the following mixture representation,

Y ¼ μþ σAW þ σαS þ σ½BW �12U ; ð1Þ

where W ∼ Eð1Þ;S ∼Nþð0; 1Þ;U ∼Nð0; 1Þ;A≡AðpÞ ¼ 1�2p
pð1�pÞ and B≡BðpÞ ¼ 2

pð1�pÞ :

Here, E;Nþ, and N denote exponential, half-normal, and normal distributions,
respectively. Then, Y follows a GAL distribution denoted Y ∼GAL ðμ; σ; p; αÞ and
has the pdf
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where θ ¼ ðμ; σ; p; αÞ, y� ¼ ðy� μÞ=σ, μ is the location parameter, σ is the scale
parameter, α is the shape parameter, pαþ ¼ p� Iðα> 0Þ and pα� ¼ p� I ðα< 0Þ
with p∈ ð0; 1Þ. The derivation of the GAL pdf from the hierarchical representa-
tion is presented in Appendix A.1 and largely follows the notations used by Yan
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and Kottas (2017). Note that when α ¼ 0, the GAL pdf reduces to the pdf of an
AL distribution.

We explore the GAL distribution in greater detail and propose the cdf
and mgf of the GAL distribution. The cdf denoted by F can be compactly writ-
ten as,
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and the mgf denoted by MY ðtÞ has the following expression,

MY ðtÞ ¼ 2pð1� pÞ ðpαþ � pα�Þ
ðpα� � σtÞðpαþ � σtÞ

� �
exp μtþ 1

2
α2σ2t2g Φð | α | σtÞ:

�
ð4Þ

Both the cdf and mgf have been derived and presented in Appendix A.2 and
Appendix A.3, respectively. In addition, Appendix A.3 utilizes the mgf (Eq. 4)
to derive the mean, variance, and skewness of the distribution. These distribu-
tional characteristics are extremely important for better understanding of the
GAL distribution and for further development of flexible Bayesian quantile
regression.

However, the GAL density given by Eq. (2) has the limitation that the
parameter p no longer corresponds to the cumulative probability at the quantile
for α≠ 0. We let γ ¼ ½I ðα> 0Þ � p� | α | and re-express the mixture representation
shown in Eq. (1) as follows,

Y ¼ μþ σAW þ σC | γ |S þ σ½BW �12U ; ð5Þ

where C ¼ ½Iðγ > 0Þ � p��1. This re-parametrization yields the quantile-fixed
GAL distribution that has the following pdf:
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where η ¼ ðμ; σ; γÞ, p≡ pðγ; p0Þ ¼ I ðγ < 0Þ þ ½p0 � I ðγ < 0Þ�=gðγÞ, pγþ ¼ p� I ðγ > 0Þ
and pγ� ¼ p� I ðγ < 0Þ. The function gðγÞ ¼ 2Φð� | γ | Þ expðγ2=2Þ and γ ∈ ðL;UÞ,
where L is the negative square root of gðγÞ ¼ 1� p0 and U is the positive square
root of gðγÞ ¼ p0. The term quantile-fixed suggests that integration of GAL pdf
(Eq. 6) to the upper limit μ equals p0, so for regression purpose we can fix the
quantile. The cdf for the quantile-fixed GAL density (Eq. 6) can be analogously
derived as in Appendix A.2 to yield the following expression,
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The quantile-fixed cdf (Eq. 7) is required for constructing the likelihood of the
FBQROR model and plays a critical role in the MCMC sampling of the scale
parameter, shape parameter, and cut-points or thresholds.

To better discern the GAL distribution, Fig. 1 presents a graphical compari-
son between the quantile-fixed GAL and AL pdf’s for three different quantiles.
We observe that the GAL distribution, unlike the AL distribution, allows the
mode to vary rather than being fixed at μ ¼ 0 at all quantiles. Besides, the GAL
distribution can be positively or negatively skewed at all quantiles depending on
the value of γ. For example, at the median p0 ¼ 0:50 the GAL distribution is
positively skewed for γ < 0 and negatively skewed for γ > 0. Also, the GAL
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distribution can have tails that are heavier or narrower than the AL distribution.
These characteristics make the GAL distribution more flexible than the AL
distribution.

3. THE FBQROR MODEL
Ordinal models arise when the dependent (response) variable is discrete, and the
outcomes are inherently ordered or ranked such that the scores assigned to out-
comes have an ordinal meaning, but no cardinal interpretation (Jeliazkov &
Rahman, 2012; Johnson & Albert, 2000). For example, in a survey on public
opinion to allow more offshore drilling, responses may be recorded as follows: 1
for “strongly oppose,” 2 for “somewhat oppose,” 3 for “somewhat support,”
and 4 for “strongly support” (Mukherjee & Rahman, 2016). These responses
have ordinal meaning but no cardinal interpretation. Therefore, one cannot say
that a score of 4 implies four times more support compared with a score of 1.

We adopt the latent variable approach and represent the FBQROR model
using a continuous latent random variable zi expressed as a function of covari-
ates and error as

zi ¼ x0iβ þ εi; ∀ i ¼ 1;…; n; ð7Þ

where xi is a k × 1 vector of covariates, β is a k × 1 vector of unknown para-
meters at the p0th quantile, εi follows a GAL distribution, that is,
εi ∼GALð0; σ; γÞ and n denotes the number of observations. Note that we have
suppressed the dependence of parameters on p0 for notational simplicity. The
variable zi is unobserved and relates to the observed discrete response yi, which
has J categories or outcomes, via the cut-point vector ξ as follows:

ξj�1 < zi ≤ ξj ⇒ yi ¼ j; ∀ i ¼ 1;…; n; j ¼ 1;…; J; ð8Þ

where ξ0 ¼ �∞ and ξJ ¼ ∞. In addition, ξ1 is typically set to 0, which anchors
the location of the distribution required for parameter identification (see
Jeliazkov, Graves, & Kutzbach, 2008). Given the data vector y ¼ ðy1;…; ynÞ0,
the likelihood for the model expressed as a function of unknown parameters
ðβ; σ; γ; ξÞ can be written as,
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where, Fp0 ð⋅Þ≡F ð⋅ | 0; 1;γÞ denotes the cdf of the GAL distribution and I ðyi ¼ jÞ
is an indicator function, which equals 1 if yi ¼ j and 0 otherwise.
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Working directly with the GAL distribution is difficult, so we replace the
error term with its mixture representation (Eq. 5) and rewrite the FBQROR
model as follows:

zi ¼ x0iβ þ σAwi þ σC | γ | si þ σ
ffiffiffiffiffiffiffiffi
Bwi

p
ui; ∀ i ¼ 1;…; n: ð10Þ

The above formulation (Eq. 10) implies that the latent variable zi | β;wi; si; σ; γ ∼
Nðx0iβ þ σC | γ | si þ σAwi; σ2BwiÞ. However, the presence of the scale parameter
σ in the conditional mean is not conducive to the construction of MCMC algo-
rithm (Kozumi & Kobayashi, 2011). We reparameterize and write the model as,

zi ¼ x0iβ þ Aνi þ C | γ | hi þ
ffiffiffiffiffiffiffiffiffiffi
σBνi

p
ui; ∀ i ¼ 1;…; n; ð11Þ

where hi ¼ σsi and νi ¼ σwi, which in turn implies that hi ∼Nþð0; σ2Þ and
νi ∼ EðσÞ for i ¼ 1;…; n. Both reformulations are necessary for computational
efficiency and low autocorrelation in MCMC draws. Note that the first repara-
meterization was not utilized by Yan and Kottas (2017), and hence, our
approach provides a better alternative to estimating linear, Tobit, and regular-
ized lasso quantile regression.

Ordinal models present two additional challenges: location and scale restric-
tions for identification of the parameters and ordering constraints in sampling of
cut-point vector ξ (see Jeliazkov et al., 2008; Rahman, 2016). In the FBQROR
model, both location and scale restrictions are enforced by fixing two cut-points
since the variance of a GAL distribution is not fixed due to its dependence on α
even if we set σ ¼ 1, as shown in Theorem 4 in Appendix A. The ordering con-
straint is resolved using the following logarithmic transformation:

δj ¼ lnðξjþ2 � ξjþ1Þ; 1≤ j ≤ J � 3: ð12Þ

The original cut-points are then obtained using Eq. (12) by one-to-one mapping
between δ ¼ ðδ1;…; δJ�3Þ0 and ξ ¼ ðξ3;…; ξJ�1Þ0, where ξ2 is fixed at some con-
stant c and recall that ξ0 ¼ �∞, ξ1 ¼ 0, and ξJ ¼ ∞.

We next employ the Bayes’ theorem and derive the joint posterior density as
proportional to the product of the likelihood and prior distributions. We employ
standard prior distributions as follows,

β∼Nðβ0;B0Þ; σ ∼ IGðn0=2; d0=2Þ;
γ ∼SBðL;UÞ; δ∼Nðδ0;D0Þ;

ð13Þ

where N, IG, and SB denote normal, inverse-gamma, and scaled-Beta distribu-
tions, respectively. The lower and upper bounds of the scaled-Beta distribution
are obtained as mentioned in Section 2. Combining the likelihood and the prior
distributions, the augmented joint posterior density can be written as,
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πðz; β; ν; h; σ; γ; δ | yÞ∝ f ðy | z; β; ν; h; σ; γ; δÞπðz | β; ν; h; σ; γ; δÞπðν | σÞπðh | σÞπðβÞ
× πðσÞπðγÞπðδÞ

∝ ∏
n

i¼1
f ðyi | zi; β; νi; hi; σ; γ; δÞπðνi | σÞπðhi | σÞ

� �
πðz | β; σ; ν; h; γÞ

× πðβÞπðσÞπðγÞπðδÞ

∝ ∏
n

i¼1
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� �
πðz | β; σ; ν; h; γÞ

× πðβÞπðσÞπðγÞπðδÞ;
ð14Þ

where the last line in the likelihood, based on GALð0; σ; γÞ, uses the fact that
given z and δ, the observed y is independent of the remaining parameters,
because Eq. (8) determines yi given ðz; δÞ with probability 1. The conditional
density of latent data z is obtained from Eq. (11) and is given by
πðz | β; σ; ν; h; γÞ ¼ ∏n

i¼1Nðzi | x0iβ þ Aνi þ C | γ | hi; σBνiÞ. Additionally, the prior
distributions for ðβ; σ; γ; δÞ are assumed to be independent in Eq. (14). Using the
preceding explanations, the “complete data posterior” in Eq. (14) can be
expressed as,

πðz; β; ν; h; σ; γ; δ | yÞ ∝ ∏
n

i¼1
1fξyi�1 < zi ≤ ξyi gNðzi | x0iβ þ Aνi þ C | γ | hi; σBνiÞ

�

× Eðνi | σÞNþðhi | 0; σ2Þ
�
Nðβ | β0;B0ÞIGðσ | n0=2; d0=2Þ

×SBðγ |L;UÞNðδ | δ0;D0Þ:
ð15Þ

The objects of interest, that is, ðz; β; ν; h; σ; γ; δÞ can be sampled by deriving
the conditional posterior densities from the complete data posterior (Eq. 15) and
judiciously using the full likelihood (Eq. 9) as presented in Algorithm 1. We
note that our proposed algorithm is a form of MH within partially collapsed
Gibbs sampler, and care has been taken to guarantee convergence to stationary
distribution as given by van Dyk and Jiao (2015).

Algorithm 1. Sampling in FBQROR Model.

• Sample β | z; ν; h; σ; γ ∼Nð~β; ~BÞ, where

~B
�1 ¼ B�1

0 þ
Xn
i¼1

xix0i
σBνi

 !
and

~β ¼ ~B
Xn
i¼1

xiðzi � Aνi � C | γ | hiÞ
σBνi

þ B�1
0 β0

 !
:

• Sample ðσ; γÞ marginally of ðz; ν; hÞ using a joint random-walk MH algo-
rithm. The proposed values ðσ0; γ0Þ are generated from a truncated bivariate
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normal distribution TBNð0;∞Þ× ðL;UÞððσc; γcÞ; ι21D̂1Þ, where ðσc; γcÞ denote the

current values, ι1 denotes the tuning factor, and D̂1 is the negative inverse
of the Hessian obtained by maximizing the log-likelihood (Eq. 9) with
respect to ðσ; γÞ. The proposed draws are accepted with MH probability,

αMH ðσc;γc;σ0;γ0Þ ¼min 0; ln
f ðy |β;σ0;γ0;δÞπðβ;σ0;γ0;δÞ
f ðy |β;σc;γc;δÞπðβ;σc;γc;δÞ

πðσc;γc |ðσ0;γ0Þ; ι21D̂1Þ
πðσ0;γ0 |ðσc;γcÞ; ι21D̂1Þ

" #( )
;

else, repeat ðσc; γcÞ in the next MCMC iteration. Here, f ð⋅Þ represents the
full likelihood (Eq. 9) obtained as the difference of cdf, πðβ; σ; δ; γÞ denotes
the prior distributions (Eq. 13), and πðσc; γc | ðσ0; γ0Þ; ι21D̂1Þ stands for the
truncated bivariate normal probability with mean ðσ0; γ0Þ and covariance
ι21D̂1. The term πðσ0; γ0 | ðσc; γcÞ; ι21D̂1Þ has an analogous interpretation.

• Sample νi | zi; β; h; σ; γ ∼GIGð0:5; ai; bÞ, for i ¼ 1;…; n, where

ai ¼
ðzi � x0iβ � C | γ | hiÞ2

σB
and b ¼ A2

σB
þ 2

σ

	 

:

• Sample hi | zi; β; νi; σ; γ ∼Nþðμhi ; σ2hi Þ for i ¼ 1;…; n, where

ðσ2hi Þ�1 ¼ 1
σ2

þ C2γ2

σBνi

	 

and μhi ¼ σ2hi

C | γ | ðzi � x0iβ � AνiÞ
σBνi

	 

:

• Sample δ | β; σ; γ; y marginally of ðz; ν; hÞ using a random-walk MH step.
The proposed value δ0 is generated as δ0 ¼ δc þ u, where u∼Nð0J�3; ι

2
2D̂2Þ,

ι2 is a tuning parameter, and D̂2 is analogous to D̂1. Accept δ0 with MH
probability,

αMH ðδc; δ0Þ ¼ min 0; ln
f ðy | β; σ; γ; δ0Þπðβ; σ; γ; δ0Þ
f ðy | β; σ; γ; δcÞπðβ; σ; γ; δcÞ

� �� �
;

else, repeat δc. Again f ð⋅Þ denotes the full likelihood (Eq. 9) and πðβ; σ; δ; γÞ
denotes the priors.

• Sample zi | y; β; νi; hi; σ; γ; δ∼TNðξj�1; ξjÞðx0iβ þ Aνi þ C | γ | hi; σBνiÞ for i ¼
1; 2;…; n, where ξ is obtained from δ by one-to-one mapping using
Eq. (12).

Starting with the regression coefficients, β is sampled from a multivariate nor-
mal distribution, draws from which are programmed in most statistical software.
The scale and shape parameters ðσ; γÞ are jointly sampled, marginally of ðz; ν; hÞ,
using a random-walk Metropolis�Hastings (MH) algorithm with proposals
drawn from a truncated bivariate normal distribution. Joint sampling (together

221Flexible Bayesian Quantile Regression in Ordinal Models



with the transformations hi ¼ σsi and νi ¼ σωi) is crucial for reducing the high
autocorrelation in MCMC draws as observed by Yan and Kottas (2017). The
latent weight ν follows a generalized inverse-Gaussian (GIG) distribution, draws
from which are obtained using the technique proposed by Devroye (2014).
Alternatively, one may employ the ratio of uniforms method or the envelope
rejection method (Dagpunar, 1988, 1989, 2007). The mixture variable h is sam-
pled from a half-normal distribution. Typical to ordinal models, the cut-points δ
do not have a tractable distribution and is sampled marginally of ðz; ν; hÞ using a
random-walk MH algorithm (see Jeliazkov et al., 2008; Rahman, 2016).
Finally, the latent variable z, conditional on the remaining parameters, is sam-
pled from a truncated normal distribution (Botev, 2017). The derivations of the
conditional posteriors and details of the MH algorithms are presented in
Appendix B.

4. SIMULATION STUDIES
This section presents two simulation studies to demonstrate the performance of
the proposed algorithm and illustrate the advantages of the FBQROR model
compared to the BQROR model.

4.1. Simulation Study 1

In this simulation study, we estimate and compare the FBQROR model with
the BQROR model when errors are generated from a symmetric distribution.
Specifically, 300 observations are generated from the model zi ¼ x0iβ þ εi, where
covariates are sampled from a standard uniform distribution Unif ½0; 1�, β ¼
ð2;� 3; 4Þ0, and ε are sampled from a logistic distribution Lð0; π2=3Þ. The result-
ing continuous variable z is symmetric and is utilized to construct the discrete
response variable y based on the cut-point vector ξ ¼ ð0; 2; 4Þ. In our simulated
data, the number of observations corresponding to the four categories of y is
42 (14%), 81 (27%), 99 (33%), and 78 (26%), respectively.

The posterior estimates of the parameters for FBQROR model are obtained
based on the simulated data and the following moderately diffuse priors:
β∼Nð03; 10I3Þ, σ ∼ IGð5=2; 8=2Þ, γ ∼SBðL;U ; 4; 4Þ, and δ∼Nð0J�3; IJ�3Þ for
p0 ¼ ð0:25; 0:5; 0:75Þ, where ðL;UÞ depends on the value of p0 as mentioned in
Section 2. Table 1 reports the MCMC results obtained from 15,000 iterations,
after a burn-in of 5,000 iterations, along with the inefficiency factors calculated
using the batch-means method (Greenberg, 2012). The parameters ðσ; γÞ are
jointly sampled using random-walk MH algorithm with tuning parameters
ι1 ¼ ð

ffiffiffiffiffiffiffi
1:7

p
;
ffiffiffiffiffiffiffiffiffi
2:25

p
;
ffiffiffiffiffiffiffi
2:0

p
Þ to achieve an acceptance rate of approximately 33 per-

cent for the three considered quantiles. Similarly, δ is sampled using a random-
walk MH algorithm with tuning factor ι2 ¼ ð

ffiffiffiffiffiffiffi
4:0

p
;
ffiffiffiffiffiffiffi
3:2

p
;
ffiffiffiffiffiffiffi
2:5

p
Þ to obtain an

acceptance rate of around 33 percent. Inefficiency factors for all the model para-
meters are low which imply low autocorrelation in MCMC draws and trace
plots of the MCMC iterations, as exhibited in Fig. 2 for the 25th quantile, dis-
play quick convergence. Trace plots for the other two quantiles are similar and
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have not been shown for the sake of brevity. The sampler is reasonably quick
and takes approximately 160 seconds per 1,000 iterations.

The first panel of Table 1 presents the results for the FBQROR model. The
results show that the posterior means for β are close to the true parameter
values, the posterior mean of σ adjusts the scale of the distribution, and the pos-
terior mean of δ1 yields a value of ξ3 close to 4, the true value used to generate
the data. We also estimate the BQROR model using a modification of
Algorithm 1 presented in Rahman (2016) � by fixing the second cut-point and
introducing a scale parameter in the model. Prior distributions for ðβ; σ; δÞ are
identical to those of the FBQROR model. The results, presented in the second
panel of Table 1, show that the posterior estimates for ðβ; σ; δÞ are similar.
Moving to the skewness parameter in the FBQROR model, the posterior mean
of γ at p0 ¼ ð0:25; 0:50; 0:75Þ are ð1:14;� 0:06;� 1:18Þ, which corresponds to a
skewness of ð0:01; 0:20; 0:04Þ, respectively. Note that the posterior mean of γ at
p0 ¼ 0:50 is statistically equivalent to zero. These skewness values imply that the
(latent) response variable is approximately symmetric at all considered quantiles,
which is reassuring since our data were generated from a symmetric distribution.
In contrast, the corresponding skewness values for the BQROR model are

Table 1. Posterior Mean (MEAN), Standard Deviation (STD) and Inefficiency
Factor (IF) of the Parameters in Simulation Study 1.

FBQROR Model

25th Quantile 50th Quantile 75th Quantile

(β, σ, γ, δ) Mean STD IF Mean STD IF Mean STD IF

β1 1.07 0.32 2.94 2.17 0.31 2.66 3.23 0.35 4.91

β2 �3.22 0.50 4.02 �3.14 0.48 3.67 �3.13 0.47 4.72

β3 3.93 0.53 4.08 3.86 0.51 3.82 3.90 0.50 5.28

σ 0.64 0.10 3.38 0.75 0.09 4.30 0.60 0.09 4.10

γ 1.14 0.27 2.55 �0.06 0.17 3.76 �1.18 0.24 2.93

δ1 0.73 0.14 4.75 0.71 0.15 4.84 0.67 0.14 5.87

BQROR Model

25th Quantile 50th Quantile 75th Quantile

(β, σ, δ) Mean STD IF Mean STD IF Mean STD IF

β1 1.15 0.30 2.46 2.12 0.29 2.56 2.86 0.26 4.43

β2 �3.23 0.46 3.21 �2.96 0.43 3.32 �2.38 0.46 5.79

β3 3.82 0.44 3.11 3.64 0.47 3.71 3.01 0.49 6.46

σ 0.65 0.07 3.55 0.71 0.07 3.84 0.45 0.05 5.92

δ1 0.85 0.13 3.84 0.60 0.14 4.51 0.35 0.15 6.55

Note: The first panel presents results from the FBQROR model and the second panel presents results
from the BQROR model.
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ð1:64; 0;�1:64Þ. Hence, the BQROR model fails to accommodate the symmetric
characteristic of the data at the 25th and 75th quantiles.

We next investigate model fitness at different quantiles since various choices
of quantile p0 may be interpreted as corresponding to a different link function.
Table 2 presents the conditional log-likelihood, the Akaike information criterion
(AIC; Akaike, 1974), and the Bayesian information criterion (BIC, Schwarz,
1978) for both the FBQROR and BQROR models. Higher conditional log-
likelihood is preferable, while lower values of AIC/BIC indicate a better model
fit. As illustrated in Table 2, the conditional log-likelihood for the FBQROR
model is identical to that for the BQROR model at the median, but higher at
the other two considered quantiles. However, the FBQROR model has an extra
shape parameter, and so to rule out the possibility of higher log-likelihood
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Fig. 2. Trace Plots of the MCMC Draws at the 25th Quantile for Simulation
Study 1.

Table 2. Model Comparison using the Conditional Log-likelihood (ln L),
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC)

in Simulation Study 1.

25th Quantile 50th Quantile 75th Quantile
(ln L, AIC, BIC) (ln L, AIC, BIC) (ln L, AIC, BIC)

FBQROR (�338,688,710) (�340,691,714) (�338,688,710)

BQROR (�346,701,720) (�340,690,708) (�348,706,724)
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arising due to additional parameters (i.e., overfitting), we compare the models
using AIC and BIC. These two measures introduce different penalty terms to
account for the number of model parameters. Based on AIC/BIC, there is strong
evidence that the FBQROR model provides a better fit at the 25th and 75th
quantiles, but there is some evidence in favor of BQROR model at the 50th
quantile. The poor fit of the BQROR model at the first and third quartiles
reflects the rigidity of the AL distribution, since p0 ¼ 0:25 (0:75) forces the AL
distribution to be positively (negatively) skewed.

4.2. Simulation Study 2

Once again we estimate the FBQROR and BQROR models with simulated
data, but now the errors are generated from a chi-square distribution such that
the resulting distribution for the continuous latent variable z is positively
skewed. In particular, 300 observations are generated from the model
zi ¼ x0iβ þ εi, where covariates are sampled from a standard uniform distribu-
tion Unif ½0; 1�, β ¼ ð3;� 7; 5Þ0 and ε is generated from χ2ð4Þ � 4, that is, a
demeaned chi-square distribution. The discrete response variable y is obtained
from z based on cut-point vector ξ ¼ ð0; 3; 6Þ, which yields 74 (24.67%), 110
(36.67%), 65 (21.67%), and 51 (17.00%) observations in the four categories of y.

Table 3 reports the MCMC estimates obtained from 15,000 iterations after a
burn-in of 5,000 iterations. Identical prior distributions as in the first simulation
study were used for both FBQROR and BQROR models. The parameters ðσ; γÞ
and δ are sampled using random-walk MH algorithm with tuning factors
ι1 ¼ ð

ffiffiffiffiffiffiffi
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;
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;
ffiffiffiffiffiffiffiffiffi
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Þ and ι2 ¼ ð
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rate of approximately 33 percent. The inefficiency factors are low and trace
plots, as displayed in Fig. 3 for the 50th quantile, show quick convergence.
Trace plots at the other two quantiles are similar. Computational time remains
unchanged at approximately 160 seconds per 1,000 iterations.

Table 3 presents the results for the FBQROR and BQROR models in the first
and second panels, respectively. In the FBQROR model, the posterior estimates
of β are close to the true values ð3;� 7; 5Þ and the posterior estimates of σ
adjusts to capture the spread. Moreover, the posterior estimates of γ capture the
skewness of the data extremely well. Specifically, the posterior mean of γ is not
statistically different from zero at the 25th quantile, so skewness is approxi-
mately same as that of BQROR model (1.64). However, the skewness at the
50th (75th) quantile is 1.31 (0:16) compared to a skewness of 0 (�1:64) in the
BQROR model. Hence, the FBQROR model correctly captures the positive
skewness of the simulated data at all quantiles. Model comparison also points to
the superiority of the FBQROR model as seen in Table 4. The conditional log-
likelihood for the FBQROR model is higher than that of BQROR model at the
50th and 75th quantiles, but identical at the 25th quantile. The AIC and BIC
values suggest that there is strong evidence to select the FBQROR model at the
50th and 75th quantiles, and some evidence to favor the BQROR model at the
25th quantile. Once again, the flexibility offered by the FBQROR model in
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Table 3. Posterior Mean (MEAN), Standard Deviation (STD), and
Inefficiency Factor (IF) of the Parameters in Simulation Study 2.

FBQROR Model

25th Quantile 50th Quantile 75th Quantile

(β, σ, γ, δ) Mean STD IF Mean STD IF Mean STD IF

β1 1.60 0.36 2.87 2.83 0.37 3.21 4.50 0.44 4.00

β2 �6.50 0.57 3.37 �6.39 0.61 3.98 �6.15 0.64 3.47

β3 3.69 0.52 3.01 3.59 0.54 3.36 3.44 0.58 3.24

σ 0.74 0.11 8.08 0.74 0.12 2.25 0.79 0.10 2.66

γ 0.09 0.15 4.75 �0.49 0.09 4.37 �1.33 0.17 2.47

δ1 0.91 0.14 2.20 0.86 0.14 2.89 0.73 0.13 3.21

BQROR Model

25th Quantile 50th Quantile 75th Quantile

(β, σ, δ) Mean STD IF Mean STD IF Mean STD IF

β1 1.10 0.23 2.72 1.91 0.24 2.44 2.68 0.24 2.78

β2 �4.40 0.40 3.71 �3.88 0.38 2.84 �3.26 0.41 3.20

β3 2.49 0.33 3.01 2.11 0.35 2.75 1.80 0.34 2.83

σ 0.47 0.04 3.07 0.63 0.06 2.93 0.49 0.04 2.94

δ1 0.51 0.15 3.23 0.25 0.14 3.02 �0.04 0.14 3.45

Note: The first panel presents results from the FBQROR model and the second panel presents results
from the BQROR model.
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Fig. 3. Trace Plots of the MCMC Draws at the 50th Quantile for Simulation
Study 2.
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terms of modeling the skewness helps provide a better model fit compared to the
rigid BQROR model.

5. APPLICATION
In the United States, consumers have typically viewed homeownership as a
good long-term financial investment. However, the recent housing crisis and the
subsequent economic recession (December 2007�June 2009) had substantial
adverse effects, particularly on homeowners. Housing values depreciated consid-
erably, more than four million foreclosures took place between 2008�2011, and
one-fourth of all homeowners were living in houses worth less than the mortgage
at the peak of the crisis (Belsky, 2013). Homeownership rate declined from 69.2
percent during Q2, 2004 to 66.4 percent during Q1, 2011 and further to 62.9 per-
cent during Q2, 2016 (US Bureau of the Census). These adverse effects may
have fundamentally altered the perceived benefits of homeownership as a good
long-term investment (see Rohe and Lindblad, 2014 for a conceptual model).
Consequently, it is of considerable interest to analyze public opinion on home-
ownership as an investment and examine how socioeconomic factors, demo-
graphic variables, and exposure to financial distress affect public responses.

This chapter utilizes the Higher Education/Housing Survey data of March
2011, conducted by the Princeton Survey Research Associates International and
sponsored by the Pew Social and Demographic Trends project. Interviews were
conducted over the telephone between March 15 and 29, 2011 on a nationally
representative sample of 2,142 adults living in the continental United States.
After removing missing responses, we are left with a sample of 1,799 observa-
tions for our analysis. Our dependent variable is response to the statement,
“Some people say that buying home is the best long-term investment in the
United States. Do you strongly agree, somewhat agree, somewhat disagree or
strongly disagree?” Responses are recorded into one of the four categories; how-
ever, we append the responses “strongly disagree” and “somewhat disagree” as
the former category had less than five percent observations. The survey also col-
lected information on a wide range of socioeconomic, demographic and geo-
graphic variables, some of which are used as covariates in the model. Table 5
presents the description and summary statistics of all covariates and the response
variable utilized in the study.

Table 4. Model Comparison using the Conditional Log-likelihood (ln L),
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC)

in Simulation Study 2.

25th Quantile 50th Quantile 75th Quantile
(ln L, AIC, BIC) (ln L, AIC, BIC) (ln L, AIC, BIC)

FBQROR (�318,649,671) (�321,654,676) (�333,678,700)

BQROR (�318,646,664) (�331,673,692) (�358,727,745)
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The average age of the sampled individuals is 44.84 years with a standard
deviation of 18.59 years. Information on family income in the survey is recorded
as one of nine income categories: < 10k, 10k � 20k, 20k � 30k, 30k � 40k,
40k � 50k, 50k � 75k, 75k � 100k, 100k � 150k, and > 150k, where k denotes a
thousand dollars and US $5,000 and US $1,70,000 have been imputed for the
first- and last-income categories. We include the logarithm of the mid-point of
the income category as a variable in the model. Mean household size is 2.92

Table 5. Descriptive Summary of the Variables.

Variable Description Mean STD

Log age Logarithm of age (in years) 3.71 0.44

Log income Logarithm of the mid-point of income category (in US dollars) 10.68 0.95

Household size Number of members in the household 2.92 1.66

Count Percent

Female Indicator variable for female gender 925 51.42

Post-bachelor’s Respondent’s highest qualification is masters, professional
or doctorate

257 14.29

Bachelor’s Respondent’s highest qualification is bachelor’s 395 21.96

Below bachelor’s Respondent holds a two-year associate degree, went to
some college with no degree, or attended technical, trade or
vocational school after high school

551 30.63

HS and Below Respondent is a high school (HS) graduate or below 596 33.92

Full-time Works full time 849 47.19

Part-time Works part time 266 14.79

Unemployed Either unemployed, student or retired 684 38.02

White Respondent is a white-American 1293 71.87

African-American Respondent is an African-American 272 15.12

All other races Respondent is an Asian, Asian-American or belongs to
some other race

234 13.01

Northeast Lives in the northeast region of United States 249 13.84

West Lives in the west region of United States 408 22.68

South Lives in the south region of United States 822 45.69

Midwest Lives in the midwest region of United States 320 17.79

Fin-better Financially better-off post the Great Recession 537 29.85

Fin-same Financially equivalent pre and post the Great Recession 445 24.74

Fin-worse Financially worse-off post the Great Recession 817 45.41

Strongly disagree or somewhat disagree that
homeownership is the best long-term investment (LTI) in
United States

310 17.23

Opinion Somewhat agree that homeownership is the best LTI 828 46.03

Strongly agree that homeownership is the best LTI 661 36.74
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with a standard deviation of 1.66. The percent of female is slightly more than
that of males. Educational classification shows that HS and below forms the
largest category (33.92%) and post-bachelors forms the smallest category
(14.29%), with proportions decreasing as we move from the lowest to the highest
educational category. Employment status shows that 61.98% are either
employed full-time or part-time, while the remaining are unemployed, student,
or retired. With respect to race, the sample is predominantly white (71.87%), fol-
lowed by African-Americans (15.12%) and all other races (13.01%).
Geographically, most of the sampled individuals live in the South (45.69%), fol-
lowed by West (22.68%), Midwest (17.79%), and Northeast (13.84%). These
regional classifications are as defined by the US Census Bureau. To measure
exposure to financial distress, we include self-reported financial condition pre-
and post-Great Recession. As expected, almost half the sampled individuals
(45.41%) are financially worse-off post the Great Recession.

Moving to the response variable, Table 5 shows that more than three-fourths
of the sampled individuals (82:77%) somewhat or strongly agree that home-
ownership is the best long-term investment. Therefore, US public opinion on
homeownership remains largely unchanged even after the housing meltdown
and the Great Recession. A similar conclusion has been obtained using data
from the Survey of Consumers collected by the University of Michigan and the
National Housing Survey collected by Fannie Mae (Belsky, 2013). This result is
primarily due to the financial benefits of homeownership making owning more
lucrative than renting, especially in the long run. Two related articles that have
studied the preference for homeownership versus renting using binary models on
survey data are those by Bracha and Jamison (2012) and Drew and Herbert
(2013). Both the studies find no fundamental shifts in attitude toward
homeownership.

We employ the FBQROR and BQROR models to analyze public opinion on
homeownership as the best long-term investment based on the covariates pre-
sented in Table 5. The MCMC results, presented in Table 6, are based on
15,000 iterations after a burn-in of 5,000 iterations with identical priors as in the
simulation studies. With three values of the ordinal response variable, we have
two cut-points and they are fixed at ð0; 3Þ for both models across quantiles.
Similar to the simulation studies, ðσ; γÞ is sampled using joint random-walk MH
algorithm with tuning parameters ι1 ¼ ð
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rate of approximately 33 percent for the three considered quantiles. The ineffi-
ciency factors of the parameters are all less than five, and trace plots of MCMC
draws, as displayed in Fig. 4 for the 75th quantile, show good mixing. Trace
plots at the other two quantiles are similar.

The results presented in Table 6 clearly show that the posterior estimates
from FBQROR and BQROR models are fairly similar across all quantiles.
Hence, we restrict our attention to the FBQROR model and use the BQROR
model for model comparison. Moreover, we primarily discuss the covariates
which are statistically different from zero at the 95% probability level. As seen
from Table 6, age has a positive effect which implies that older individuals are
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more likely to strongly agree that homeownership is the best long-term invest-
ment. This result is consistent with the view that older adults are less likely to
change their attitude when faced with harsh economic experiences such as an
economic crisis (Giuliano & Spilimbergo, 2014; Malmendier & Nagel, 2011).
Our result also finds support in the study by Bracha and Jamison (2012), who
find that older individuals are more confident about homeownership (relative to
renting) following large price declines. Income has a positive effect implying that
higher income individuals are more likely to agree with the investment benefits
of homeownership. However, income is an important factor only at the 25th
quantile. This result is somewhat consistent with that of Drew and Herbert

Table 6. Posterior Mean (Mean) and Standard Deviation (STD) of the
Parameters in the FBQROR and BQROR Models for the Homeownership

Application.

FBQROR BQROR

25th
Quantile

50th
Quantile

75th
Quantile

25th
Quantile

50th
Quantile

75th
Quantile

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Intercept �3.11 0.93 �1.72 1.02 0.18 0.90 �3.08 0.89 �1.43 0.93 1.44 0.62

Log age 0.52 0.17 0.60 0.17 0.55 0.16 0.18 0.16 0.63 0.17 0.47 0.12

Log income 0.18 0.08 0.16 0.09 0.15 0.08 0.25 0.08 0.14 0.08 0.04 0.05

Household
size

0.01 0.04 0.01 0.04 0.01 0.04 �0.01 0.04 0.01 0.04 0.02 0.03

Female 0.64 0.14 0.62 0.14 0.54 0.13 0.57 0.13 0.57 0.13 0.32 0.09

Post-
bachelor’s

�0.83 0.22 �0.86 0.22 �0.81 0.20 �0.50 0.21 �0.86 0.21 �0.62 0.15

Bachelor’s �0.72 0.20 �0.74 0.19 �0.69 0.18 �0.43 0.18 �0.74 0.18 �0.52 0.13

Below
bachelor’s

�0.37 0.17 �0.36 0.17 �0.33 0.16 �0.26 0.16 �0.34 0.16 �0.25 0.12

Full-time �0.04 0.16 �0.02 0.16 �0.02 0.14 �0.09 0.15 �0.01 0.15 0.01 0.10

Part-time �0.07 0.21 �0.05 0.21 �0.09 0.19 �0.01 0.19 �0.06 0.20 �0.12 0.14

White 0.04 0.21 0.01 0.21 0.01 0.18 0.18 0.18 �0.03 0.20 �0.06 0.14

African-
American

0.05 0.26 0.03 0.27 0.05 0.24 0.17 0.23 �0.01 0.25 �0.01 0.17

Northeast 0.37 0.24 0.34 0.24 0.27 0.22 0.41 0.22 0.28 0.23 0.12 0.16

West 0.44 0.22 0.46 0.22 0.34 0.19 0.39 0.19 0.42 0.21 0.17 0.14

South 0.34 0.19 0.35 0.19 0.23 0.17 0.38 0.17 0.30 0.18 0.05 0.12

Fin-worse �0.45 0.16 �0.48 0.16 �0.43 0.14 �0.34 0.15 �0.46 0.15 �0.31 0.11

Fin-same �0.25 0.18 �0.26 0.18 �0.24 0.17 �0.25 0.18 �0.25 0.17 �0.15 0.13

σ 0.89 0.13 1.07 0.05 0.83 0.08 0.88 0.03 1.06 0.04 0.59 0.02

γ 1.05 0.31 �0.10 0.10 �1.09 0.24 .. .. .. .. .. ..
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(2013), who find no statistically significant association between income and
viewing homeownership as a better financial choice over renting.

Opinions across gender often vary due to risk perceptions, and this is
reflected in our results. We find that females are more likely to strongly agree
that homeownership is the best long-term investment across all quantiles. This
result is consistent with the view that females are more risk averse than males,
and homeownership has historically been a safe investment. However, our
results are in contrast to those of Bracha and Jamison (2012), who find that
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Fig. 4. Trace Plots of the MCMC Draws at the 75th Quantile for the
Homeownership Application.
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females are more uncertain about the financial gain from buying a house.
Higher education has a negative effect on positive opinion about homeowner-
ship. The negative post-bachelors coefficient indicates that an individual with a
post-bachelor’s degree (relative to HS and below education) will be less willing
to strongly agree that homeownership is the best long-term investment.
Similarly, individuals with a bachelor’s or below bachelor’s education are less
likely to positively view the investment benefits of homeownership. The negative
effect of higher education on homeownership is also reported by Bracha and
Jamison (2012) and Drew and Herbert (2013).

Employment status, whether full-time or part-time as compared to being
unemployed, does not account for differences in opinion on the financial benefits
of homeownership. The same is true for the white and African-American race
indicators. Thus, individuals have similar views on homeownership as an invest-
ment irrespective of employment status or race. During the housing crisis, the
decline in housing prices varied tremendously across geographic regions. West
and South regions experienced the largest declines in housing prices.
Accordingly, we include indicator variables for geographic regions to capture
differences in opinion due to residing in different regions. The results from the
lower quantiles suggest that individuals living in the West, relative to Midwest,
are more likely to strongly agree on the financial benefits of homeownership.
This result is interesting since people living in the West were the hardest hit in
terms of housing price declines. Undoubtedly, the housing meltdown and the
economic crisis caused serious financial distress to a large number of individuals
in the United States. This experience may have altered views on homeownership.
To capture the effect of financial distress on homeownership views, we include
indicator variables for post-recession financial situation. The results indicate
that individuals who are financially worse-off post the Great Recession, relative
to those who are better-off, are less probable to strongly agree that homeowner-
ship is the best long-term investment. Hence, our results provide evidence that
financial hardship endured during the Great Recession negatively impacted pub-
lic views on the investment benefits of homeownership.

In the previous paragraphs, we discussed the direction of covariate effects on
the last outcome, that is, strongly agree that homeownership is the best long-
term investment. The direction of covariate effect on the first outcome (strongly
disagree or somewhat disagree) is the opposite, while the effect on the second
outcome (somewhat agree) cannot be known a-priori. This is because the link
function in ordinal models is nonlinear, and hence, the regression coefficients do
not give the covariate effects. To make it clear, we calculate the marginal effect
for three variables: female, post-bachelor’s, and worse financial condition
(Jeliazkov & Vossmeyer, 2018). The change in predicted probabilities for the
three response are reported in Table 7. We see that at the 25th quantile, indivi-
duals who are exposed to financial distress (i.e., financially worse-off) are 6.71%
less likely to “strongly agree,” 2.19% more likely to “somewhat agree,” and
4.52% more likely to “strongly disagree or somewhat disagree” that homeowner-
ship is the best long-term investment. The marginal effect of financial distress on
the responses “strongly agree” is more pronounced at the 50th and 75th
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quantiles. We can similarly interpret the change in predicted probabilities for
female and post-bachelor’s education on the three responses for different
quantiles.

To assess model fitness across quantiles, we report the conditional log-
likelihood, AIC, and BIC in Table 8. The log-likelihood for the FBQROR
model across all quantiles is higher or similar to that obtained from the
BQROR model. However, according to AIC, there is strong (weak) evidence in
favor of the FBQROR model at the 25th (75th) quantile, but weak evidence in
favor of the BQROR model at the 50th quantile. Based on BIC, there is strong
evidence to prefer the FBQROR (BQROR) model at the 25th (50th) quantile,
but positive evidence to prefer the BQROR model at the 75th quantile.

6. CONCLUSION
This chapter presents an estimation algorithm for Bayesian quantile regression
in univariate ordinal models where the error is assumed to follow a GAL distri-
bution, referred to as the FBQROR model. To propose this estimation proce-
dure, we explore the GAL distribution and introduce and derive its cumulative
distribution function and moment generating function. We show that the advan-
tages offered by the GAL distribution � which allows the mode, skewness and
tails to vary for any given quantile � can be gainfully utilized to better estimate
Bayesian quantile regression in ordinal models. We also emphasize on the effi-
ciency of the MCMC algorithm, which is attained through suitable transforma-
tion of the variables and joint sampling of the scale and shape parameters. The
practical advantages of the proposed model are illustrated in multiple simulation

Table 7. Change in Predicted Probability of the Responses.

Female Post-bachelors Fin-worse

25th
Quantile

50th
Quantile

75th
Quantile

25th
Quantile

50th
Quantile

75th
Quantile

25th
Quantile

50th
Quantile

75th
Quantile

ΔP(y ¼ 1) �0.0630 �0.0553 �0.0504 0.0962 0.0900 0.0852 0.0452 0.0429 0.0404

ΔP(y ¼ 2) �0.0322 �0.0405 �0.0467 0.0174 0.0282 0.0473 0.0219 0.0302 0.0360

ΔP(y ¼ 3) 0.0952 0.0958 0.0970 �0.1136 �0.1182 �0.1325 �0.0671 �0.0731 �0.0764

Note: Somewhat or strongly disagree ðy ¼ 1Þ, somewhat agree ðy ¼ 2Þ, and strongly agree ðy ¼ 3Þ that homeowner-
ship is the best long-term investment.

Table 8. Model Comparison using the Conditional Log-likelihood (ln L),
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC)

in the Homeownership Application.

25th Quantile 50th Quantile 75th Quantile
(ln L, AIC, BIC) (ln L, AIC, BIC) (ln L, AIC, BIC)

FBQROR (�1816,3671,3775) (�1815,3668,3772) (�1816,3671,3775)

BQROR (�1824,3684,3783) (�1815,3665,3764) (�1818,3673,3772)
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studies via model comparison, where it is observed that the FBQROR model
can provide a better model fit compared to an ordinal model with an AL distri-
bution, labeled BQROR model (Rahman, 2016). Our proposed algorithm is
also implemented to examine US public opinion on homeownership as the best
long-term investment following the Great Recession. The results provide inter-
esting insights which may be useful for policymakers and researchers on US
housing market.

The GAL distribution proposed by Yan and Kottas (2017) and further stud-
ied in this chapter is relatively new and needs to be studied further, particularly
due to its usefulness in Bayesian quantile regression. In fact, the GAL distribu-
tion can practically be employed to estimate most Bayesian quantile regression
models that have been estimated using the AL distribution. A partial list
includes the Tobit model with endogenous covariates, censored model, count
data model, mixed-effect or longitudinal data model (work in progress), and
censored dynamic panel data model. Moreover, the distribution can also be uti-
lized to explore Bayesian variable selection in all the above-mentioned models.
We leave these opportunities for future research.
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APPENDIX 1: THE GAL DISTRIBUTION
This appendix derives the pdf of the GAL distribution from the mixture repre-
sentation of the AL distribution and introduces the cdf and mgf of the GAL dis-
tribution. The mgf is also utilized to derive the mean, variance, and skewness of
the GAL distribution.

A.1. PROBABILITY DENSITY FUNCTION
Theorem 1. Suppose Y ∼GALðμ; σ; p; αÞ and has the pdf given by Eq. (2), then Y
has the following hierarchical representation, Y ¼ μþ ασS þ σAðpÞWþ
σ½BðpÞW �12U , where all the notations are as in Section 2.

Proof. Using the mixture representation we can write the pdf of Y as

f ðy |θÞ¼
Z
R

þ

Z
R

þ
Nðy |μþ σαsþ σAðpÞw;σ2BðpÞwÞ expðw |1ÞNþðs |0;1Þdw ds
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where θ ¼ ðμ; σ; p; αÞ, a ¼ σAðpÞ ¼ σð1�2pÞ
pð1�pÞ , b ¼ μþ σαs, and c ¼ σ2BðpÞ ¼ 2σ2

pð1�pÞ.

We let P denote the second integral and integrate with respect to w as follows,
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where the third line makes the substitutions γ ¼ a2þ2c

c ¼ 1
2pð1�pÞ ;

μ2 ¼ γc
ðy�bÞ2 ¼ σ2

p2ð1�pÞ2ðy�bÞ2, and μ ¼ σ
pð1�pÞ | y�b | . In the fourth line, integration with

respect to w yields 1 because it is the pdf of a reciprocal inverse-Gaussian
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distribution, that is, w∼RIGðγ; μÞ. Substituting the values of ðγ; μ; a; b; cÞ in
Eq. (A.2) and canceling terms, we get

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
exp

ð1� 2pÞðy� bÞ
2σ

� | y� b |
2σ

8<
:

9=
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� pÞ

p
exp � 1

σ
p� I ðy≤ bÞ½ �ðy� bÞ

8<
:

9=
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� pÞ

p
exp � 1

σ
p� I ðy≤ μþ σαsÞ½ �ðy� μ� σαsÞ

8<
:

9=
;:

ðA:3Þ

Substituting the value of P from Eq. (A.3) into Eq. (A.1), canceling terms, writ-
ing the pdf of S and letting κ ¼ 2pð1� pÞ=σ, the pdf of Y is

f ðy | θÞ ¼ κ
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Evaluation of the pdf f ðy | θÞ given by Eq. (A.4) leads to four cases depending on
the sign of α and y� ¼ ðy� μÞ=σ, and we integrate them one at a time. We also
employ the earlier introduced notation pα� ¼ p� Iðα< 0Þ and pαþ ¼ p� I ðα> 0Þ
in each cases.

Case (i). When ðα> 0; y� ≤ 0Þ, then Iðy� ≤ αsÞ ¼ 1. The corresponding pdf is,

f ðy | θÞ ¼ κ

Z ∞

0

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2
y� μ

σ
� αs

0
@

1
Aðp� 1Þ

2
4

3
5

8<
:

9=
;ds

¼ κ

Z ∞

0

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2 y� � αsð Þpαþ
� 8<

:
9=
;ds

¼ κ exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;
Z ∞

0

1ffiffiffiffiffi
2π

p exp � 1
2

s� αpαþ
� �28<

:
9=
;ds

¼ κ exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;Φ s� αpαþ

� �����∞
0

¼ κ Φ αpαþ
� �

exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;:

ðA:5Þ

238 MOHAMMAD ARSHAD RAHMAN AND SHUBHAM KARNAWAT



Case (ii). For ðα > 0; y� > 0Þ we have two cases. Case (a): y� > αs implies
I ðy� ≤ αsÞ ¼ 0 and this occurs for all s∈ ½0; y�=αÞ. Case(b): y� ≤ αs implies
I ðy� ≤ αsÞ ¼ 1, and this occurs for all s∈ ½y�=α;∞Þ. Hence, the pdf is
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1ffiffiffiffiffi
2π

p exp � 1
2

s� αpα�
� �28<

:
9=
;ds

þ κ exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;
Z∞
y�

α

1ffiffiffiffiffi
2π

p exp � 1
2

s2 � αpαþ
� �28<

:
9=
;ds

¼ κ exp �y�pα� þ 1
2
α2p2α�

8<
:

9=
;Φ s� αpα�

� � y�

α

0

�������
þ κ exp �y�pαþ þ 1

2
α2p2αþ

8<
:

9=
;Φ s� αpαþ

� � ∞

y�

α

�������
¼ κ Φ

y�

α
� αpα�

0
@

1
A�Φð�αpα�Þ

2
4

3
5exp �y�pα� þ 1

2
α2p2α�

8<
:

9=
;

þ κ Φ αpαþ � y�

α

0
@

1
A

2
4

3
5exp �y�pαþ þ 1

2
α2p2αþ

8<
:

9=
;: ðA:6Þ

Case (iii). When ðα< 0; y� > 0Þ, then I ðy� ≤ αsÞ ¼ 0 since α< 0. Hence, we
have
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f ðy | θÞ ¼ κ

Z∞
0

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2ðy� � αsÞpαþ
� 8<

:
9=
;ds

¼ κ exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;
Z∞
0

1ffiffiffiffiffi
2π

p exp � 1
2

s� αpαþ
� �28<

:
9=
;ds

¼ κ ΦðαpαþÞ exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;:

ðA:7Þ

Case (iv). For ðα < 0; y� ≤ 0Þ, we have two cases. Case (a): y� ≤ αs implies
I ðy� ≤ αsÞ ¼ 1, and this occurs for all s∈ ½0; y�=α�. Case(b): y� > αs implies
I ðy� ≤ αsÞ ¼ 0, and this occurs for all s∈ ðy�=α;∞Þ. So we have,

f ðy | θÞ ¼ κ

Zy�α
0

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2ðy� � αsÞðp� 1Þ� 8<
:

9=
;ds

þ κ

Z∞
y�

α

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2ðy� � αsÞp� 8<
:

9=
;ds

¼ κ

Zy�α
0

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2ðy� � αsÞpα�
� 8<

:
9=
;ds

þ κ

Z∞
y�

α

1ffiffiffiffiffi
2π

p exp � 1
2

s2 þ 2ðy� � αsÞpαþ
� 8<

:
9=
;ds

¼ κ Φ
y�

α
� αpα�

0
@

1
A�Φð�αpα�Þ

2
4

3
5exp �y�pα� þ 1

2
α2p2α�

8<
:

9=
;

þ κ Φ αpαþ � y�

α

0
@

1
A

2
4

3
5exp �y�pαþ þ 1

2
α2p2αþ

8<
:

9=
;;

ðA:8Þ

where the integration details are similar to Case (ii) and have been suppressed to
avoid monotonicity and save space.

Combining all the four cases, that is, Eqs. (A.5) to (A.8), we have the pdf of
the GAL distribution given by Eq. (2).
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A.2. CUMULATIVE DISTRIBUTION FUNCTION
Theorem 2. Suppose Y ∼GALðμ; σ; p; αÞ and let y� ¼ ðy� μÞ=σ, then the cdf F is

F ðy | θÞ ¼ 1� 2Φ � y�

| α |

0
@

1
A� 2pð1� pÞ

pα�
exp �y�pα� þ 1

2
α2p2α�

8<
:

9=
;

0
@

Φ
y�

α
� αpα�

0
@

1
A� Φð�αpα�Þ

2
4

3
5
1
AI

y�

α
> 0

0
@

1
A

þ Iðα< 0Þ � 2pð1� pÞ
pαþ

exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;

× Φ αpαþ � y�

α
I

y�

α
> 0

0
@

1
A

2
4

3
5:

ðA:9Þ

Proof. We note that for any cdf F ðy | θÞ ¼ R y�∞ f ðv | θÞdv ¼ 1� R∞y f ðv | θÞdv.
This property is used in deriving the cdf when y> μ to avoid breaking the region
of integration as ð�∞; μÞ∪ðμ; yÞ. We let v� ¼ ðv� μÞ=σ, combining cases and
derive as follows:

Case (i). When (α> 0; y≤ μ) or (α< 0; y> μ), the cdf is

F ðy |θÞ ¼

Zy
�∞

κΦðαpαþÞexp �v�pαþ þ
1
2
α2p2αþ

8<
:

9=
;dv; if α>0;y≤μ

1�
Z∞
y

κΦðαpαþÞexp �v�pαþ þ
1
2
α2p2αþ

8<
:

9=
;dv; if α<0;y>μ

8>>>>>>>><
>>>>>>>>:

¼

κΦðαpαþÞexp
1
2
α2p2αþ

8<
:

9=
; expf�v�pαþg

�pαþ=σ

2
4

3
5y

�∞

; if α>0;y≤μ

1�κΦðαpαþÞexp
1
2
α2p2αþ

8<
:

9=
; expf�v�pαþg

�pαþ=σ

2
4

3
5∞

y

; if α<0;y>μ

8>>>>>>>><
>>>>>>>>:

¼

2pð1�pÞ
�pαþ

ΦðαpαþÞexp �y�pαþ þ
1
2
α2p2αþ

8<
:

9=
;; if α>0;y≤μ

1�2pð1�pÞ
pαþ

ΦðαpαþÞexp �y�pαþ þ
1
2
α2p2αþ

8<
:

9=
;; if α<0;y>μ

8>>>>>>><
>>>>>>>:

ðA:10Þ
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where the third step substitutes the value of κ, pαþ ¼ p� 1 for α > 0 and pαþ ¼ p
for α< 0.

Case (ii). When (α < 0; y≤ μ) or (α> 0; y> μ), the cdf is,

F ðy | θÞ ¼

Zy
�∞

κ Φ
v�

α
� αpα�

0
@

1
A�Φð�αpα�Þ

2
4

3
5exp �v�pα� þ 1

2
α2p2α�

8<
:

9=
;

0
@

þ Φ αpαþ � v�

α

0
@

1
Aexp �v�pαþ þ 1

2
α2p2αþ

8<
:

9=
;
1
Adv; if α< 0; y≤ μ

1� R∞y κ Φ
v�

α
� αpα�

0
@

1
A�Φð�αpα�Þ

2
4

3
5exp �v�pα� þ 1

2
α2p2α�

8<
:

9=
;

0
@

þ Φ αpαþ � v�

α

0
@

1
Aexp �v�pαþ þ 1

2
α2p2αþ

8<
:

9=
;
1
Adv; if α> 0; y> μ:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ðA:11Þ

Note that in both the subcases of Eq. (A.11), the integral remains the same and
only the limits of integration change. Hence, we evaluate each terms individually
over the limits (a; b) and will substitute values of ða; bÞ as per our requirement.

To evaluate the first integral component of Eq. (A.11) denoted C1, we substi-
tute z ¼ v�=α� αpα� and perform integration by parts as follows:

C1 ¼ κ

Z b

a
Φ

v�

α
�αpα�

0
@

1
Aexp �v�pα� þ

1
2
α2p2α�

8<
:

9=
;dv

¼ κ exp �1
2
α2p2α�

8<
:

9=
;
Z b�

α
�αpα�

a�

α
�αpα�

ασΦðzÞexpf�αpα�zg
� 

dz

¼ κσ exp �1
2
α2p2α�

8<
:

9=
; αΦðzÞexp �αpα�z

� �
�αpα�

2
4

3
5
b�

α
�αpα�

a�

α
�αpα�

0
BBBBB@

� α

�αpα�

Z b�

α
�αpα�

a�

α
�αpα�

1ffiffiffiffiffi
2π

p exp �1
2
ðz2þ2αpα�zþα2p2α� �α2p2α�Þ

8<
:

9=
;dz

1
CCCCA
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¼ κσ exp �1
2
α2p2α�

8<
:

9=
;

exp α2p2α�

n o
�pα�

Φ
b�

α
�αpα�

0
@

1
Aexp �b�pα�

� �
2
664

0
BB@

�Φ
a�

α
�αpα�

0
@

1
Aexp �a�pα�

� �35þ 1
pα�

exp
1
2
α2p2α�

8<
:

9=
;Φ zþαpα�

� �b
�

α
�αpα�

a�

α
�αpα�

1
CCCCA

¼� κσ

pα�
exp

1
2
α2p2α�

8<
:

9=
; Φ

b�

α
�αpα�

0
@

1
Aexp �b�pα�

� �2
4

�Φ
a�

α
�αpα�

0
@

1
Aexp �a�pα�

� � þ κσ

pα�
Φ

b�

α

0
@

1
A�Φ

a�

α

0
@

1
A

2
4

3
5:

3
5

ðA:12Þ

We next evaluate the second component denoted C2 directly as follows:

C2 ¼ �κΦð�αpα�Þ
Z b

a
exp �v�pα� þ 1

2
α2p2α�

8<
:

9=
;dv

¼ �κΦð�αpα�Þexp
1
2
α2p2α�

8<
:

9=
; exp �v�pα�

� �
�pα�=σ

2
4

3
5b

a

¼ κσ

pα�
Φð�αpα�Þexp

1
2
α2p2α�

8<
:

9=
; exp �b�pα�

� �� exp �a�pα�
� �� 

:

ðA:13Þ

Finally, to evaluate the third component denoted C3 we use the substitution
z ¼ αpαþ � v�=α and integrate-by-parts as done in C1. We suppress the details
for brevity and present the final expression:

C3 ¼ κ

Z b

a
Φ αpαþ � v�

α
exp �v�pαþ þ 1

2
α2p2αþ

8<
:

9=
;

0
@

1
Adv

¼ � κσ

pαþ
exp

1
2
α2p2αþ

8<
:

9=
; Φ αpαþ � b�

α

0
@

1
A

2
4

expf � b�pαþg �Φ αpαþ � a�

α

0
@

1
Aexpf � a�pαþg

3
5

þ κσ

pαþ
Φ � b�

α

0
@

1
A�Φ � a�

α

0
@

1
A

2
4

3
5:

ðA:14Þ
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Note that Φ b�
α

� ��Φ a�
α

� � ¼ �Φ � b�
α

� �þΦ � a�
α

� �
, and hence, the relevant term

from Eqs. (A.12) and (A.14) can be collected together when adding the
expressions.

When α< 0 and y≤ μ, the limits of integration a ¼ �∞ and b ¼ y imply
a� ¼ �∞ and b� ¼ y�, respectively. Substituting the values of a�; b� and κ in
C1;C2 and C3 and summing the expression yields,

F ðy | θÞ ¼ 2Φ � y�

α

0
@

1
A� 2pð1� pÞ

pα�
exp �y�pα� þ 1

2
α2p2α�

8<
:

9=
;

Φ
y�

α
� αpα�

0
@

1
A�Φð�αpα�Þ

2
4

3
5

� 2pð1� pÞ
pαþ

exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;Φ αpαþ � y�

α

0
@

1
A:

ðA:15Þ

Similarly, when α> 0 and y> μ, the limits of integration a ¼ y and b ¼ ∞
imply a� ¼ y� and b� ¼ ∞, respectively. Substituting the values of a�; b� and κ
in C1;C2 and C3 and evaluating the expression 1� C1 � C2 � C3 yield

F ðy | θÞ ¼ 1� 2Φ � y�

α

0
@

1
A� 2pð1� pÞ

pα�
exp �y�pα� þ 1

2
α2p2α�

8<
:

9=
;

Φ
y�

α
� αpα�

0
@

1
A�Φð�αpα�Þ

2
4

3
5� 2pð1� pÞ

pαþ

exp �y�pαþ þ 1
2
α2p2αþ

8<
:

9=
;Φ αpαþ � y�

α

0
@

1
A:

ðA:16Þ

Combining the Eqs. (A.10), (A.15), and (A.16), we have the cdf of the GAL
distribution given by Eq. (3).

A.3. MOMENT GENERATING FUNCTION
Theorem 3. Suppose Y ∼GALðμ; σ; p; αÞ, then the mgf denoted MY ðtÞ is as
follows,

MY ðtÞ ¼ 2pð1� pÞ ðpαþ � pα�Þ
ðpα� � σtÞðpαþ � σtÞ

� �
exp μtþ 1

2
α2σ2t2

� �
Φð | α | σtÞ: ðA:17Þ

Proof. Using the definition of the mgf, we have
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MY ðtÞ ¼
Z∞
�∞

expðtyÞf ðy | μ; σ; p; αÞdy: ðA:18Þ

Substituting the GAL pdf given by Eq. (2) into Eq. (A.18) leads to two cases
depending on α> 0 or α< 0. We again use the notation κ ¼ 2pð1� pÞ=σ and
break the region of integration depending on y� > 0 (i.e., y > μ) or y� ≤ 0 (i.e.,
y≤ μ).

Case (i). When α> 0 and y� > 0 (i.e., y> μ), we have the following three
components,

M1 ¼ κ

Z ∞

μ
exp ftygΦ y�

α
� αpα�

0
@

1
Aexp �y�pα� þ 1

2
ðαpα�Þ2

8<
:

9=
;dy;

M2 ¼ �κ

Z ∞

μ
exp ftygΦð�αpα�Þexp �y�pα� þ 1

2
ðαpα�Þ2

8<
:

9=
;dy;

M3 ¼ κ

Z ∞

μ
exp ftygΦ αpαþ � y�

α

0
@

1
Aexp �y�pαþ þ 1

2
ðαpαþÞ2

8<
:

9=
;dy;

ðA:19Þ

and when α> 0 and y� ≤ 0 (i.e., y≤ μ), we have

M4 ¼ κ

Zμ
�∞

expftygΦðαpαþÞ exp �y�pαþ þ 1
2
ðαpαþÞ2

� �
dy: ðA:20Þ

We first consider M1, substitute z ¼ y�

α � αpα� , change the limits of integra-
tion, and integrate-by-parts as follows:

M1 ¼
Z ∞

�αpα�

κασ expfμtþασðzþαpα�ÞtgΦðzÞexp �αpα�ðzþαpα�Þþ
1
2
α2p2α�

8<
:

9=
;dz

¼ κασ exp μtþα2pα�σt�
1
2
α2p2α�

8<
:

9=
;
Z ∞

�αpα�

ΦðzÞexp �αðpα� �σtÞz� �
dz

¼ κασ exp μtþα2pα�σt�
1
2
α2p2α�

8<
:

9=
; ΦðzÞ expf�αðpα� �σtÞzg

�αðpα� �σtÞ

����∞
�αpα�

2
4

�
Z ∞

�αpα�

ϕðzÞexpf�αðpα� �σtÞzg
�αðpα� �σtÞ dz

#
ðlimit existsonly if t<p=σÞ

¼ κσ
exp μtþα2pα�σt� 1

2α
2p2α�

n o
ðpα� �σtÞ

"
expfα2pα�ðpα� �σtÞgΦð�αpα�Þ
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þ exp
α2

2
ðpα� �σtÞ2

8<
:

9=
;
Z ∞

�αpα�

1ffiffiffiffiffi
2π

p exp �1
2
ðzþαðpα� �σtÞ2Þ

8<
:

9=
;dz

#

¼ κσ
exp μtþ 1

2α
2p2α�

n o
ðpα� �σtÞ Φð�αpα�Þþ κσ

exp μtþ 1
2α

2σ2t2
� �
ðpα� �σtÞ Φðzþαðpα� �σtÞÞ

�����
∞

�αpα�

¼ κσ
exp μtþ 1

2α
2p2α�

n o
ðpα� �σtÞ Φð�αpα�Þ þ κσ

exp μtþ 1
2α

2σ2t2
� �
ðpα� �σtÞ ΦðασtÞ: ðA:21Þ

Second, we integrate the expression for M2 as follows:

M2 ¼ �κ

Z ∞

μ
exp ftygΦð�αpα�Þ exp �y�pα� þ 1

2
α2p2α�

8<
:

9=
;dy

¼ �κΦð�αpα�Þ exp
pα�μ
σ

þ 1
2
α2p2α�

8<
:

9=
;
Z ∞

μ
exp �ðpα� � σtÞ

σ
y

8<
:

9=
;dy

¼ �κ Φð�αpα�Þ exp
pα�μ
σ

þ 1
2
α2p2α�

8<
:

9=
;×

ð�1Þð � σÞ
ðpα� � σtÞ exp

�ðpα� � σtÞ
σ

μ

8<
:

9=
;

¼ �κσ
exp μtþ 1

2 α
2p2α�

n o
ðpα� � σtÞ Φð�αpα�Þ ðlimit exists only if t < p=σÞ:

ðA:22Þ

The integral M3 is evaluated by substituting z ¼ αpαþ � y�

α . Thereafter, the
integration is analogous to M1 with the existence condition t> ðp� 1Þ=α and
yields:

M3 ¼ κσ
expfμtþ 1

2 α
2p2αþg

ðpαþ � σtÞ ΦðαpαþÞ � κσ
expfμtþ 1

2 α
2σ2t2g

ðpαþ � σtÞ ΦðασtÞ: ðA:23Þ

The integral M4 can be directly evaluated and closely follows the steps in the
integration of M2 with the resulting expression,

M4 ¼ �κσ
exp μtþ 1

2 α
2p2αþ

n o
ðpαþ � σtÞ ΦðαpαþÞ: ðA:24Þ

where the limits of integration exist only for t> ðp� 1Þ=σ.
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To obtain the mgf of the GAL distribution, we substitute the values of κ and
sum the four Eqs. (A.21)�(A.24). This yields,

MY ðtÞ ¼ 2pð1� pÞ ðpαþ � pα�Þ
ðpα� � σtÞðpαþ � σtÞ

� �
exp μtþ 1

2
α2σ2t2

� �
ΦðασtÞ: ðA:25Þ

Case (ii). When α< 0 and y� ≤ 0 (i.e., y≤ μ), we have the following three
components of the mgf,

M5 ¼ κ

Zμ
�∞

exp ftygΦ y�

α
� αpα�

0
@

1
Aexp �y�pα� þ 1

2
ðαpα�Þ2

8<
:

9=
;dy;

M6 ¼ �κ

Zμ
�∞

exp ftygΦð�αpα�Þ exp �y�pα� þ 1
2
ðαpα�Þ2

8<
:

9=
;dy;

M7 ¼ κ

Zμ
�∞

exp ftygΦ αpαþ � y�

α

0
@

1
Aexp �y�pαþ þ 1

2
ðαpαþÞ2

8<
:

9=
;dy;

ðA:26Þ

and when α< 0 and y� > 0 (i.e., y> μ), we have

M8 ¼ κ

Z ∞

μ
expftygΦðαpαþÞexp �y�pαþ þ 1

2
ðαpαþÞ2

� �
dy: ðA:27Þ

The integration of the terms M5 to M8 are similar to the case when α > 0 and
results in the following mgf:

MY ðtÞ ¼ 2pð1� pÞ ðpαþ � pα�Þ
ðpα� � σtÞðpαþ � σtÞ

� �
exp μtþ 1

2
α2σ2t2

� �
Φð�ασtÞ: ðA:28Þ

Combining the mgf for the two cases, that is, Eqs. (A.25) and (A.28), we
have the mgf of the GAL distribution.

The mean, variance, and skewness of the GAL distribution can be obtained
from the GAL mgf given by Eq. (A.17). We state this in terms of a theorem below.

Theorem 4. Suppose Y ∼GALðμ; σ; p; αÞ, then
EðY Þ ¼ μþ 2 | α | σffiffiffiffiffi

2π
p þ σ

ð1� 2pÞ
pð1� pÞ

V ðY Þ ¼ α2σ2 1� 2
π

0
@

1
Aþ σ2

1� 2pþ 2p2

p2ð1� pÞ2

2
4

3
5

SðY Þ ¼
α3

ffiffi
2
π

q
4
π � 1
� �þ 2 ð1�pÞ3�p3

p3ð1�pÞ3
h i

α2 1� 2
π

� �þ 1�2pþ2p2

p2ð1�pÞ2
h in o3=2

ðA:29Þ
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where EðY Þ, V ðY Þ, and SðY Þ denote the mean, variance, and skewness,
respectively.

Proof. Taking logarithm of the mgf and keeping terms involving t, we have

lnMY ðtÞ ∝ � ln ðpα� � σtÞ � ln ðpαþ � σtÞ þ μtþ 1
2
α2σ2t2 þ ln Φð | α | σtÞ:

ðA:30Þ

Taking the first, second, and third derivatives of Eq. (A.30) and evaluating at
t ¼ 0, we get

m1ðY Þ ¼ EðY Þ ¼ ∂lnMY ðtÞ
∂t

����
t¼0

¼ μþ
ffiffiffi
2
π

s
ασ þ σ

ð1� 2pÞ
pð1� pÞ

m2ðY Þ ¼ V ðY Þ ¼ ∂
2lnMY ðtÞ

∂t2

����
t¼0

¼ α2σ2 1� 2
π

0
@

1
Aþ σ2

1� 2pþ 2p2

p2ð1� pÞ2

2
4

3
5

m3ðY Þ¼ ∂
3lnMY ðtÞ

∂t3

����
t¼0

¼ α3σ3
ffiffiffi
2
π

s
4
π
� 1

0
@

1
Aþ 2σ3

ð1� pÞ3 � p3

p3ð1� pÞ3

2
4

3
5

where m1ðY Þ;m2ðY Þ, and m3ðY Þ are the first-, second-, and third-order central
moments, respectively. Hence, skewness can be obtained as m3

ðm3=2
2 Þ.
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APPENDIX 2: CONDITIONAL DENSITIES IN THE
FBQROR MODEL

In this appendix, we derive the conditional posteriors of the FBQROR model
parameters. Specifically, the conditional posteriors of β; ν; h, and z have
tractable distributions and is sampled using a Gibbs approach. The parameters
ðσ; γÞ are jointly sampled using random-walk MH algorithm (to reduce autocor-
relation in MCMC draws) and δ is sampled using a random-walk MH algo-
rithm. The derivations below follow the ordering as presented in Algorithm 1.

(1) Starting with β, the conditional posterior πðβ | z; ν; h; σ; γÞ is proportional to
πðβÞ × f ðz | β; ν; h; σ; γÞ and its kernel can be written as,

πðβ |z;ν;h;σ;γÞ ∝exp �1
2

Xn
i¼1

ðzi�x0iβ�Aνi�C |γ |hiÞ2
σBνi

þðβ�β0Þ0B�1
0 ðβ�β0Þ

2
4

3
5

8<
:

9=
;

∝exp �1
2

β0
Xn
i¼1

xix0i
σBνi

þB�1
0

0
@

1
Aβ�β0

xiðzi�Aνi�C |γ |hiÞ
σBνi

þB�1
0 β0

0
@

1
A

2
4

8<
:

� x0iðzi�Aνi�C |γ |hiÞ
σBνi

þβ00B
�1
0

0
@

1
A
3
5
9=
;

∝exp �1
2

β0 ~B
�1
β�β0 ~B

�1 ~β� ~β
0 ~B

�1
βþ ~β

0 ~B
�1 ~β� ~β

0 ~B
�1 ~β

h i8<
:

9=
;

∝exp �1
2
ðβ� ~βÞ0 ~B�1ðβ� ~βÞ

8<
:

9=
;;

where the posterior variance ~B and the posterior mean ~β are defined as
follows:

~B
�1 ¼

Xn
i¼1

xix0i
σBνi

þ B�1
0

 !
and ~β ¼ ~B

Xn
i¼1

xiðzi � Aνi � C | γ | hiÞ
σBνi

þ B�1
0 β0

 !
:

Hence, the conditional posterior is a normal distribution and
β | z; ν; h; σ; γ ∼Nð~β; ~BÞ.

(2) The parameters ðσ; γÞ are jointly sampled marginally of ðz; ν; hÞ to reduce
autocorrelation in the MCMC draws. Collecting terms involving ðσ; γÞ from
the complete joint posterior density (Eq. 15) does not yield a
tractable distribution, hence ðσ; γÞ are sampled using a joint random-walk
MH algorithm. The proposed values are generated from a truncated bivari-
ate normal distribution TBNð0;∞Þ× ðL;UÞððσc; γcÞ; ι21D̂1Þ, where ðσc; γcÞ represent
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the current values, ι1 denotes the tuning factor, and D̂1 is the negative
inverse of the Hessian obtained by maximizing the log-likelihood (Eq. 9)
with respect to ðσ; γÞ. This maximization process to obtain D̂1 is computa-
tionally expensive and so may be done only once at the beginning of the
algorithm with β values fixed at the BQROR or OLS estimates. The pro-
posed draws are accepted with MH probability

αMH ðσc;γc;σ0;γ0Þ¼min 0; ln
f ðy |β;σ0;γ0;δÞπðβ;σ0;γ0;δÞ
f ðy |β;σc;γc;δÞπðβ;σc;γc;δÞ

πðσc;γc |ðσ0;γ0Þ; ι21D̂1Þ
πðσ0;γ0 |ðσc;γcÞ; ι21D̂1Þ

" #( )
;

otherwise, ðσc; γcÞ is repeated in the next MCMC iteration. Here, f ð⋅Þ repre-
sents the full likelihood (Eq. 9), πðβ; σ; δ; γÞ denotes the prior distributions
(Eq. 13), πðσc; γc | ðσ0; γ0Þ; ι21D̂1Þ stands for the truncated bivariate normal prob-
ability with mean ðσ0; γ0Þ and covariance ι21D̂1. The expression
πðσ0; γ0 | ðσc; γcÞ; ι21D̂1Þ has an analogous interpretation. Note that the tuning
parameter ι1 can be adjusted for appropriate step-size and acceptance rate, and
the parameters ðA;B;CÞ depend on p which in turn is a function of p0 and γ.

(3) The conditional posterior of ν is obtained from the complete posterior den-
sity (Eq. 15) by collecting terms involving ν. This is done element-wise as
follows:

πðνi | z; β; h; σ; γÞ ∝ ν
�1
2

i exp � 1
2

ðzi � x0iβ � Aνi � C | γ | hiÞ2
σBνi

2
4

3
5� νi

σ

8<
:

9=
;

∝ ν
�1
2

i exp � 1
2

ðzi � x0iβ � C | γ | hiÞ2
σB

ν�1
i þ A2

σB
þ 2

σ

0
@

1
Aνi

2
4

3
5

8<
:

9=
;

∝ ν
�1
2

i exp � 1
2

aiν�1
i þ bνi

� 8<
:

9=
;;

which is recognized as the kernel of a GIG distribution where

ai ¼
ðzi � x0iβ � C | γ | hiÞ2

σB
and b ¼ A2

σB
þ 2

σ

	 

:

Hence, νi | z; β; h; σ; γ ∼GIGð0:5; ai; bÞ for i ¼ 1; 2;…; n.
(4) The conditional posterior of h is obtained element-wise from the com-

plete posterior density (Eq. 15) conditional on γ and remaining para-
meters as follows:
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πðhi | z; β; ν; σ; γÞ ∝ exp � 1
2

ðzi � x0iβ � Aνi � C | γ | hiÞ2
σBνi

þ h2i
σ2

2
4

3
5

8<
:

9=
;

∝ exp � 1
2

1
σ2

þ C2γ2

σBνi

0
@

1
Ah2i �

2C | γ | ðzi � x0iβ � AνiÞ
σBνi

hi

2
4

3
5

8<
:

9=
;

∝ exp � 1
2

ðσ2hi Þ�1h2i � 2ðσ2hi Þ�1μhi hi
h i8<

:
9=
;

∝ exp � 1
2
ðσ2hi Þ�1ðhi � μhi Þ2

8<
:

9=
;;

where the third line introduces the following notations:

ðσ2hi Þ�1 ¼ 1
σ2

þ C2γ2

σBνi

	 

and μhi ¼ σ2hi

C | γ | ðzi � x0iβ � AνiÞ
σBνi

	 

;

and the fourth line adds and subtracts ðσ2hi Þ
�1μ2hi to complete the square. The

last expression is recognized as the kernel of a half-normal distribution, and
hence, hi | z; β; ν; σ; γ ∼Nþðμhi ; σ2hi Þ for i ¼ 1; 2;…; n.

(5) The transformed cut-point δ is sampled from the full likelihood (Eq. 9), mar-
ginally of (z; ν; h). The proposed values are generated from a random-walk
chain, δ0 ¼ δc þ u, where u∼Nð0J�3; ι

2
2D̂2Þ, ι2 is a tuning parameter, and D̂2

denotes negative inverse Hessian, obtained by maximizing the log-likelihood
with respect to δ. Given the current value δc, the proposed value δ0 is
accepted with MH probability,

αMHðδc; δ0Þ ¼ min 0; ln
f ðy | β; σ; γ; δ0Þπðβ; σ; γ; δ0Þ
f ðy | β; σ; γ; δcÞπðβ; σ; γ; δcÞ

� �� �
;

otherwise, the current value δc is repeated. The variance of u may be tuned
as required for an appropriate step-size and acceptance rate.

(6) The full conditional density of the latent variable z is a truncated normal
distribution where the cut-point vector ξ is obtained based on one-to-one
mapping with δ. Hence, z is sampled as zi | β; ν; h; σ; γ; δ; y∼TNðξj�1 ; ξj Þ
ðx0iβ þ Aνi þ C | γ | hi; σBνiÞ for i ¼ 1;…; n and j ¼ 1;…; J.
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