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CHAPTER 1

BINARY AND ORDINAL DATA ANALYSIS

IN ECONOMICS: MODELING AND

ESTIMATION

Ivan Jeliazkov and Mohammad Arshad Rahman

Department of Economics, University of California, Irvine

1.1 INTRODUCTION

This chapter is concerned with the analysis of statistical models for binary
and ordinal outcomes. Binary data arise when a particular response variable
of interest yi can take only two values, i.e. yi ∈ {0, 1}, where the index i =
1, . . . , n refers to units in the sample such as individuals, families, firms, and
so on. Such dichotomous outcomes are widespread in the social and natural
sciences. For example, to understand socio-economic processes, economists
often need to analyze individuals’ binary decisions such as whether to make a
particular purchase, participate in the labor force, obtain a college degree, see
a doctor, migrate to a different country, or vote in an election. By convention,
yi = 1 typically indicates the occurrence of the event of interest, whereas the
occurrence of its complement is denoted by yi = 0.
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2 BINARY AND ORDINAL DATA ANALYSIS IN ECONOMICS: MODELING AND ESTIMATION

We also examine modeling and estimation issues related to another type
of data, called ordinal data, where yi can take one of J ordered values, j =
1, . . . , J . The defining feature of ordinal data is that even though the outcomes
are monotone, the scale on which they are measured is not assumed to be
cardinal and differences between categories are not directly comparable. For
instance, in quantifying survey responses on consumer satisfaction, 1 could be
assigned to “very unhappy”, 2 to “not too happy”, 3 to “happy”, and 4 to
“very happy”, but even though the scale tells us that 4 implies more happiness
than 2, this does not mean that 4 implies twice as much happiness as 2, or
that the difference in happiness between 1 and 3 is the same as that between
2 and 4. Even though ordinal data models were developed primarily for the
analysis of data on rankings, they offer a flexible modeling framework that
can also be very useful in the analysis of certain types of count data.

In this chapter we pursue several goals. We briefly review relevant results
from the theory of choice which formalize the link between economic theory
and empirical practice in binary and ordinal data analysis. We then turn our
attention to the topic of estimation and highlight the identification issues that
arise in binary and ordinal models. We review both classical and Bayesian
approaches to estimation, and introduce a new simulation-based estimation
algorithm for logit models based on data augmentation. Even though the
theoretical foundations for this algorithm have been available for decades, the
approach has remained unexploited until now. Our estimation approach re-
moves important obstacles that have hindered extensions of logistic regression
to multivariate and hierarchical model settings.

Another topic that we examine here is covariate effect estimation, which al-
lows us to evaluate the impact of particular covariates on the outcome of inter-
est and gives concrete practical meaning to the parameters of the model. The
techniques are illustrated in two applications in economics including women’s
labor force participation and educational attainment. The methods discussed
here form a foundation for studying other more complex recent developments
in the literature such as extensions to panel data, multivariate and multino-
mial outcomes, dynamics, mixed models, and copula models.

1.2 THEORETICAL FOUNDATIONS

There exist a number of statistical models for binary and ordinal data, but
they share a common foundation in which the observed discrete outcomes
can be represented by the crossing of particular thresholds by an underlying
continuous latent variable. This latent variable threshold-crossing formulation
can in turn be related to the theory of choice in economics to form an elegant
link between behavioral and statistical models. Because of this link, models
for discrete data in econometrics are also frequently referred to as discrete
choice models. The derivations are important because the latent variable
representation turns out to be particularly useful not only in theory, but
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also in estimation. It also helps clarify the relationship between empirical
models based on different distributional assumptions and provides a basis
for the calculation of important quantities in economics, such as consumer
surplus or willingness to pay. Note, however, that the econometric techniques
are fully general and can be used to represent various phenomena that do
not necessarily entail references to utility or choice (e.g., weather patterns,
accident probabilities, volcanic eruptions, etc.).

In order for the decision problem to be well-posed, the set of available
alternatives, or choice set, must be defined so that alternatives are (i) mu-

tually exclusive, i.e. they represent distinct non-overlapping outcomes, and
(ii) exhaustive, so that all possible outcomes are fully accounted for. These
criteria are easily satisfied in the context of binary and ordinal data where
the dependent variable yi is simply an indicator variable for the occurrence of
a particular event. One should keep in mind, that while in some contexts the
dichotomy can be a natural feature of the data (e.g. medical tests, welfare
program participation, home ownership, criminal recidivism, etc.), in other
cases it can be introduced subjectively by the researcher to study a particular
socio-economic phenomenon. For example, in studying market participation,
a researcher may set yi = 1 for producers whose sales in a given market are
positive and yi = 0 for all others. At first glance this discretization may seem
unreasonable as it leads to loss of information on magnitudes (since both small
and large sellers are treated alike). However, economic theory suggests that
the presence of fixed costs leads firms to treat market entry and exit differ-
ently than the problem of how much to produce conditionally on being in
the market. For this reason, the delineation of firms into market participants
(regardless of sales volume) and non-participants (those with zero sales) can
be an important first step in studying market outcomes. In the case of ordi-
nal data, the outcomes will easily satisfy the first criterion if the dependent
variable yi ∈ {1, . . . , J} is defined as the sum of indicator variables over a par-
ticular monotone set of events. The second criterion, on the other hand, can
either be satisfied naturally if outcomes are measured on a finite scale (as in
surveys, or bond and stock ratings) or may have to be imposed by specifying
a composite category that captures all possible outcomes beyond a certain
value (as is common in the analysis of count data). Therefore, the nature
of the choice set in binary and ordinal data models is in sharp contrast with
standard models for continuous dependent variables, such as consumption or
growth.

1.2.1 Binary Outcomes

The roots of the random utility framework that underlies discrete choice mod-
els in econometrics can be traced back to the pioneering work of [15], [16],
and [17]. A detailed recent review with applications to problems in modern
econometrics is given in [25]. The basic setup involves utility maximizing
decision makers, who choose among competing alternatives associated with
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certain levels of utility. The theory is quite general and can handle a variety of
possible choices; the same ideas apply in our binary data context where there
are only two possible alternatives. Specifically, individual i has two levels of
utility, Ui1 and Ui0, that are associated with yi = 1 or yi = 0, respectively.
The utility maximizing agent then selects the option providing the higher of
the two utilities:

yi =

{

1 if Ui1 > Ui0,
0 otherwise.

The utilities Ui1 and Ui0 are known to the decision maker but are unknown
to the researcher, who can only observe a vector xi of characteristics of the
decision maker that can be related to utility through Uij = x′

iβj + εij for
j = 0, 1. The term x′

iβj is sometimes referred to as representative utility,
whereas εij captures unobserved factors that affect utility but are not included
in x′

iβj . In essence, x′
iβj is a systematic component and εi,j is a stochastic

(from the point of view of the researcher) part of individual utility.
This theoretical setup will be used to make probabilistic statements about

the observed choices yi conditionally on xi. In the remainder of this chapter,
conditioning of one variable on another will be denoted by a vertical bar ‘ | ’,
for example, Pr(A|B) will represent the conditional probability of A given B.
Similarly, if s is a continuous random variable f(s|t) will be used to denote
the conditional density of s given t. In some contexts, when it is important
to make clear the link between a random variable and its density, we may use
notation such as s|t to emphasize that we are interested in a random variable
with density f(s|t), i.e. s|t ∼ f(s|t), as opposed to a random variable s with
density f(s), i.e. s ∼ f(s).

To develop a model for the observed choices, note that given xi and the
parameters β0 and β1, the conditional probability of observing yi = 1 can be
expressed as an exceedance probability between the two utility levels

Pr(yi = 1|xi, β0, β1) = Pr(Ui1 > Ui0)

= Pr(x′
iβ1 + εi1 > x′

iβ0 + εi0)

= Pr[(εi0 − εi1) < x′
i(β1 − β0)].

(1.1)

The model is operationalized by specifying a density for the random variable
(εi0 − εi1), but before we consider specific cases, we need to address the
important topic of parameter identification. From equation (1.1) we see that
the choice probability depends only on the differences in utilities between
alternatives, not on the absolute level of utilities. Specifically, because the
probability in (1.1) depends on the difference (β1 − β0), it will not change if
we add an arbitrary constant c to both β0 and β1, i.e., x

′
i(β1−β0) = x′

i(β̃1−β̃0),
where β̃1 = β1+c and β̃0 = β0+c. Second, the scale of utility is not identified
because the probability is unchanged if both sides of (1.1) are multiplied by an
arbitrary constant c > 0, i.e., Pr[(εi0 − εi1) < x′

i(β1 − β0)] = Pr[c(εi0 − εi1) <
cx′

i(β1 − β0)].



THEORETICAL FOUNDATIONS 5

To deal with these problems, we need to fix both the location and scale
of utility. The location is fixed by measuring utility relative to that of the
baseline category, Ui0. In other words, we work with the differenced form

zi = x′
iβ + νi, i = 1, . . . , n, (1.2)

where zi = Ui1 − Ui0, β = β1 − β0, and νi = εi1 − εi0. As a result, the
relationship between the observed outcome yi and the latent zi is given by

yi =

{

1 if zi > 0,
0 otherwise,

(1.3)

which can alternatively be written as yi = 1{zi > 0} using the indicator
function 1{·} that takes the value 1 if its argument is true and 0 otherwise.
The scale of utility is normalized by fixing the variance of νi and treating
it as given rather than as a parameter to be estimated; doing so is only a
normalization that does not restrict the underlying flexibility of the model.
(One should keep in mind that the value at which the variance of νi is fixed
will be model specific.) In the following examples, we review the three most
common model specifications used in empirical analysis – probit, logit, and
t-link or robit.

EXAMPLE 1.1

The probit model is obtained by assuming that the errors in (1.2) follow
a standard normal distribution νi ∼ N(0, 1) with probability density
function (pdf) and cumulative distribution function (cdf) given by

φ(νi) = (2π)−1/2e−ν2
i /2 and Φ(νi) =

∫ νi

−∞

φ(t)dt.

Note that the pdf φ(·) is symmetric and the variance of νi is fixed at
1 as a normalization. In addition, even though the expression for the
Gaussian cdf Φ(·) does not have a closed form solution, it is readily
available in most statistical software packages.

EXAMPLE 1.2

The logit model is obtained by assuming that the errors in (1.2) follow a
logistic distribution whose cdf FL(·) and pdf fL(·) are explicitly available
(see Exercise 1.1 for a derivation of fL(·) from FL(·)):

FL(νi) =
(

1 + e−νi
)−1

and fL(νi) = FL(νi)[1− FL(νi)].

The logistic distribution is symmetric with mean 0, variance π2/3, and
heavier tails than the normal distribution. The tail mass makes it more
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likely to observe “non-conforming” behavior such as choosing yi = 0
for large positive x′

iβ or yi = 1 for large negative x′
iβ. In Exercise 1.2,

we derive another well known result (see [16] and [18]) that the logit
choice probabilities are obtained if the errors εi0 and εi1 in (1.1) follow
an extreme value type I distribution.

EXAMPLE 1.3

The t-link or “robit” model is obtained by assuming that the errors in
(1.2) follow a standard Student’s t distribution with τ degrees of freedom.
The distribution is symmetric around 0, has variance τ/(τ−2) for τ > 2,
and its pdf fTτ

(·) and cdf FTτ
(·) are given by

fTτ
(νi) =

Γ( τ+1
2 )

Γ( τ2 )
√
τπ

(

1 +
ν2i
τ

)− τ+1

2

and FTτ
(νi) =

∫ νi

0

fTτ
(s)ds,

where Γ(s) =
∫∞

0 ts−1e−tdt denotes the gamma function (which equals
(s− 1)! for positive integer values of s). Note that the variance of the t
distribution is larger than in the probit case but approaches 1 for τ → ∞.
Also, the cdf FTτ

(·) does not have a closed form solution, but is readily
available in most statistical software packages.

An appealing feature of the t-link model is its flexibility: low values
of τ produce heavier tails than the logistic distribution, setting τ ≈ 8
approximates the logit model, and as τ → ∞, the t distribution approx-
imates the standard normal. Figure 1.1 shows the log-densities for the
standard normal, scaled logistic and scaled t with 4 degrees of freedom
(the scaling is done so that all three variances are 1). Because the t-link
offers a modeling approach that is robust to variations in the tail be-
havior of the latent zi, it has also been referred to by the portmanteau
word “robit” (“robust” + the suffix “-it” to resemble probit and logit).

Given the three specifications we have just considered, we can now obtain
the outcome probabilities Pr(yi = 1|β) and Pr(yi = 0|β) = 1 − Pr(yi =
1|β) (we suppress the dependence of these probabilities on xi for notational
convenience). In particular, from (1.2) and (1.3) and under the assumption
that the density of νi is symmetric, we have that

Pr(yi = 1|β) = Pr(zi > 0)

= Pr(x′
iβ + νi > 0)

= 1− Pr(νi < −x′
iβ)

= 1− [1− Pr(νi < x′
iβ)]

= Pr(νi < x′
iβ) = F (x′

iβ),
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Figure 1.1 Log-densities for the standard normal, scaled logistic and Student’s t
with 4 degrees of freedom.

where F (·) is the assumed cdf of νi – as before, F (·) = Φ(·) produces the
probit model, F (·) = FL(·) leads to logit, and F (·) = FTτ

(·) gives the t-link
model. Symmetry is used in obtaining the second to last line, and while all
models considered here involve symmetric distributions, readers are cautioned
to be careful in general.

1.2.2 Ordinal Outcomes

We now turn attention to models for ordinal data, where the alternatives are
inherently ordered or ranked. Common applications that involve ordered out-
comes include sentiment or opinion surveys, quality tests, health assessment
studies, the level of employment (unemployed, part-time, full-time), the level
and usage of insurance, and others.

Similarly to the models studied in Section 1.2.1, ordinal data models can
be motivated by an underlying latent variable threshold-crossing framework.
In particular, as in (1.2) we assume that a continuous latent random variable
zi depends on a k-vector of covariates xi through the relationship zi = x′

iβ +
νi, i = 1, . . . , n, but with the difference that the observed outcomes yi ∈
{1, . . . , J} arise according to

yi = j if γj−1 < zi ≤ γj , (1.4)
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Figure 1.2 Outcome probabilities in an ordinal data model.

where −∞ = γ0 < γ1 < ... < γJ−1 < γJ = ∞ are cutpoint parameters
that determine the discretization of the data into J ordered categories. An
alternative way of writing (1.4) is to let yi =

∑J
j=1 1{zi > γj−1}. Given this

representation and a particular cdf F (νi), the probability of observing yi = j,
conditional on β and γ = (γ1, . . . , γJ−1)

′
, is given by

Pr (yi = j|β, γ) = F (γj − x′
iβ)− F (γj−1 − x′

iβ) . (1.5)

Figure 1.2 depicts the probabilities of yi falling in category j as determined
by (1.5) in a four-category setting. As before, various choices of the cdf F (·)
are possible—e.g. F (·) = Φ(·), F (·) = FL(·), F (·) = FTτ

(·), and so on—but
the ordinal probit model is one of the most practical because it is tractable
in univariate cases and can be easily generalized to flexible multivariate and
hierarchical settings. In contrast, the logistic distribution can not handle
correlations in multivariate settings.

As with models for binary data, we require both location and scale re-
strictions in order to identify the parameters. To see the need for doing so,
note that the probabilities in (1.5) are invariant to shifting and rescaling the
parameters by some arbitrary constants c and d > 0 because

F (γj − x′
iβ) = F (γj + c− (x′

iβ + c))

and

F (γj − x′
iβ) = F

(

γjd− x′
iβd

d

)

,

which can be applied to both terms in (1.5) without affecting Pr (yi = j|β, γ).
The first identification problem is easily corrected by fixing a cutpoint – in
particular, letting γ1 = 0 removes the possibility for shifting the distribution
without changing the probability of observing yi. As in binary data models,
we resolve the possibility for rescaling (our second identification problem) by
fixing the variance of νi. The variance equals 1 in the probit case, π2/3 in the
logit case, and τ/(τ − 2) in the t-link model.
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Figure 1.3 Parameter identification in ordinal data models.

Figure 1.3 illustrates these identification considerations. The first panel
in the figure illustrates that shifting the density and all cutpoints leaves the
probability unaffected; the second panel shows that even if one sets γ1 = 0,
in the absence of a scale restriction, one can simultaneously rescale F (·), the
mean, and the remaining cutpoints without affecting Pr (yi = j|β, γ).

In addition to fixing one cutpoint and the variance of νi, there are other
possible ways to achieve parameter identification. For example, as an alter-
native to letting γ1 = 0, it is possible to identify the parameters by dropping
the intercept term from x′

iβ. Moreover, instead of fixing the variance of νi,
one can impose a scale restriction by fixing two cutpoints (e.g., γ1 = 0 and
γJ−1 = 1). The presence and effectiveness of these alternative approaches
has been examined in [13] and the references therein, however, these alter-
natives will not be examined here because they are primarily of interest in
multivariate models.

1.3 ESTIMATION

This section reviews both classical and Bayesian methods for estimating the
models considered in Section 1.2. Classical estimation in this class of models
typically employs the method of maximum likelihood, which requires numer-
ical optimization of the log-likelihood function. Bayesian estimates, on the
other hand, are generally obtained by Markov chain Monte Carlo (MCMC)
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simulation methods such as Gibbs sampling or the Metropolis-Hastings algo-
rithm.

In addition to reviewing existing estimation methods, this chapter also in-
troduces a new estimation algorithm for logit models that has been overlooked
in the literature. The method not only supplements our toolkit for dealing
with logistic regression, but also lays a foundation for estimating important
extensions of the logit model to multivariate and hierarchical settings.

1.3.1 Maximum Likelihood Estimation

Consider a set of observations y = (y1, . . . , yn)
′ that comes from some sta-

tistical model with sampling density f(y|θ) written in terms of a parameter
vector θ. Because f(y|θ) provides a mathematical description of the proba-
bilistic phenomenon that generates the observed data sample y given θ, it is
called the data generating process. Note that the data generating process is
a function of the data conditionally on the parameters, and indeed we can
think of it as the mathematical model by which, given θ, nature generates
y. In practice, empirical researchers see the sample y generated from f(y|θ),
but do not know the value of θ. When f(y|θ) is viewed as a function of the
parameter vector θ given the sample y, it is called the likelihood function.
Although the two functions refer to the same object, f(y|θ), they emphasize
(and take as arguments) its two different components. A thorough review
of likelihood inference can be found in standard statistics and econometrics
references such as [11].

The maximum likelihood estimator (or MLE) is defined as the value of θ
that maximizes the log-likelihood function

θ̂MLE = argmax
θ

ln f(y|θ), (1.6)

or heuristically, it is the value of θ that makes the observed sample y as “likely”
as possible within the confines of the assumed data generating process. Note
that because the logarithmic transformation is monotone, the value θ̂MLE

that maximizes ln f(y|θ) also maximizes f(y|θ), however, it is common to
work with ln f(y|θ) because it is more stable and easier to evaluate than

f(y|θ), and also because the most important statistical properties of θ̂MLE

are associated with features of ln f(y|θ). Specifically, it is known that under

mild regularity conditions, the maximum likelihood estimator θ̂MLE defined
in (1.6) is consistent and asymptotically normally distributed. Consistency

means that as the sample size n → ∞, the probability limit (or plim) of θ̂MLE

is the true value θ0, i.e., plim θ̂MLE = θ0. Asymptotic normality means that
in large samples, as n → ∞,

θ̂MLE ∼ N
(

θ0, V
−1

)

,
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where V is the Fisher information defined as the negative of the expected
value of the second derivative (or Hessian) matrix of the log-likelihood

V = −E

[

∂2 ln f(y|θ)
∂θ∂θ′

]

evaluated at θ0 and the expectation is taken with respect to f(y|θ0). Be-
cause it is typically impossible to evaluate this expectation, it is common to
approximate V by the observed Hessian

V = −∂2 ln f(y|θ)
∂θ∂θ′

,

which is evaluated at the maximum likelihood value θ = θ̂MLE . The standard
errors of the individual elements of θ̂MLE are given by the square root of the
diagonal entries of V −1, and those can be used in testing and constructing
confidence intervals. Next, we consider the likelihood functions for the models
studied in Section 1.2

For the binary data models that we considered in Section 1.2.1, the likeli-
hood function can be written as

f(y|β) = Pr(y1, y2, . . . , yn|β)

=

n
∏

i=1

Pr(yi|β)

=







∏

i:yi=1

F (x′
iβ)













∏

i:yi=0

[1− F (x′
iβ)]







=

n
∏

i=1

[F (x′
iβ)]

yi [1− F (x′
iβ)]

(1−yi) ,

(1.7)

where the second line follows by assuming independence among the observa-
tions and the last line is simply a convenient expression for picking the relevant
probability. This likelihood function captures all three binary data models dis-
cussed in Section 1.2.1 – probit, logit, and t-link – which could be obtained
by using the appropriate cdf in place of F (·) as discussed in Section 1.2.1.

In order to find the maximum likelihood estimate β̂MLE , we maximize the
log-likelihood function

ln f(y|β) =
n
∑

i=1

{yi lnF (x′
iβ) + (1− yi) ln[1 − F (x′

iβ)]} ,

which is typically done iteratively using standard hill climbing algorithms such
as Newton-Raphson or BHHH (see [3]) because the first-order condition for
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maximization

∂ ln f(y|β)
∂β

≡
n
∑

i=n

[

yif(x
′
iβ)

F (x′
iβ)

− (1− yi)
f(x′

iβ)

1 − F (x′
iβ)

]

xi = 0

does not admit an explicit analytical solution even though the log-likelihood
is typically well behaved (unimodal and concave) in this class of models.

Turning attention to ordinal outcomes, equation (1.5) and the assumption
of independent sampling give the following likelihood function for the ordinal
data model

f (y|β, γ) =
n
∏

i=1

Pr(yi|β, γ)

=

n
∏

i=1

[F (γj − x′
iβ) − F (γj−1 − x′

iβ)] ,

(1.8)

where the index j on the cutpoints in the second line is determined by the
realization of yi (recall that because yi takes values in {1, . . . , J}, it can be
used for indexing the cutpoints, i.e. γj = γyi

and γj−1 = γyi−1).
A minor complication arises in maximizing ln f (y|β, γ) because the values

of the free cutpoints must satisfy an ordering constraint: γ1 = 0 < γ2 <
... < γJ−1. In order to avoid the computational complexities associated with
constrained optimization, it is useful to reparameterize the problem in order
to remove those constraints. For example, optimization can be simplified by
transforming the cutpoints γ so as to remove the ordering constraint by the
one-to-one map

δj = ln(γj − γj−1), 2 ≤ j ≤ J − 1, (1.9)

and rewriting the likelihood as a function of β and δ = (δ2, . . . , δJ−1)
′, i.e.

drawing inferences from f(y|β, δ). Other transformations have been consid-
ered in [4] and comparisons have been drawn in [13], but these transformations
relate to alternative identification restrictions of the scale of the model and
will not be examined here.

1.3.2 Bayesian Estimation

In contrast to classical (or frequentist) inference, which only involves the like-
lihood function f(y|θ), Bayesian analysis rests on Bayes’ theorem

π(θ|y) = f(y|θ)π(θ)
∫

f(y|θ)π(θ)dθ ,

and inference is based on the posterior density π(θ|y), which is proportional
to the product of the likelihood and the prior density π(θ). There are im-
portant theoretical advantages of Bayesian analysis over classical inference,
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which have been carefully reviewed in [10], [14], [21], and [23]. For example,
the posterior density allows for finite sample inferences about the unknown
parameter vector θ that incorporates information from the observed sample
(which enters through the likelihood) and non-sample information (e.g. from
previous studies, theoretical considerations, the researcher’s experience, etc.),
which enters through the prior. In addition to their finite sample properties,
Bayesian estimators also have desirable asymptotic properties (as n → ∞).

An important practical benefit of Bayesian estimation is that inference is
possible even in models where the likelihood f(y|θ) is difficult to evaluate and
hence maximum likelihood estimation is infeasible. In those cases, progress
has been made possible by recent advances in simulation-based estimation
and data augmentation which allow sampling from π(θ|y) without requiring
evaluation of f(y|θ). Such simulation methods, based on MCMC theory, have
enabled inference in previously intractable applications. Once a sample of
draws {θ} from π(θ|y) is available, those draws can be used to summarize fea-
tures of the posterior (such as mean, variance, quantiles, etc.) and construct
point and interval estimates.

For the binary and ordinal data models we have examined in this chapter,
Bayes’ theorem will lead to a posterior density

π(θ|y) ∝ f(y|θ)π(θ)

that typically does not belong to a known family of distributions and can
not be sampled directly. This is because even if the prior π(θ) is selected
from a well-known class of distributions (e.g., Gaussian), the parameters enter
the likelihood f(y|θ) in such a way (note the nonlinearity in equations (1.7)
and (1.8)) that the posterior π(θ|y) does not have a recognizable analytical
representation.

In this Section we present tools for dealing with this problem in two ways.
First, we discuss a general MCMC simulation technique, called the Metropolis-
Hastings algorithm, that can be employed to produce draws from intractable
distributions. Second, we review a method that circumvents the problem by
augmenting the sampling scheme with an additional vector of variables in a
way that restores tractability. The benefit of this approach, called data aug-
mentation, is that it enables estimation by Gibbs sampling (another MCMC
simulation technique). In the remainder of this Section, we review all of these
methods and propose a new data augmentation algorithm for the logit model
which has not appeared elsewhere in the literature.

1.3.2.1 Metropolis-Hastings Algorithm. The Metropolis-Hastings (MH) algo-
rithm ([19], [12], [24], [5]) is a versatile Markov chain simulation method for
non-standard distributions. Denoting the current value of θ by θc, it proceeds
by generating a proposed value θp ∼ q(θ|y) from the proposal density q(·). In
principle q(·) can depend on θc (e.g. in random walk proposal densities), but
in this chapter we examine a version of the MH algorithm, called indepen-
dence chain MH, in which the proposal density does not vary with θc. The
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proposed draw θp is accepted with probability

αMH(θc, θp|y) = min

{

1,
f(y|θp)π(θp)q(θc|y)
f(y|θc)π(θc)q(θp|y)

}

,

and if θp is rejected, θc is repeated as the next value of θ in the Markov chain.
As shown by [12] (also see [24], [5]), the limiting distribution of the draws of θ
coming from the MH algorithm is π(θ|y). In practice, this means that after a
transient phase (called the burn-in period), draws obtained by MH simulation
can be viewed as coming from π(θ|y).

To apply the independence chain MH algorithm in our context, we note
that a suitable proposal density can be obtained by employing the MLE results
from Section 1.3.1. In particular, for any of the models studied in Sections
1.2.1 and 1.2.2, the proposal density can be constructed as a multivariate t
density

q(θ|y) = fTω
(θ|θ̂, aΨ),

with mean θ̂ = θ̂MLE and scale matrix aΨ, where Ψ is given by the inverse of
the negative Hessian of the log-likelihood

Ψ = −
[

∂2 ln f(y|θ)
∂θ∂θ′

]−1

.

evaluated at θ = θ̂MLE , a is a scalar tuning parameter, and ω is the degrees
of freedom of the proposal density. The tuning parameter a is typically taken
to be a ≥ 1 and ω is usually set at a small value, both of which are intended
to ensure that the proposal has sufficiently heavy tails to explore the space
more thoroughly. In the examples in this paper, we use ω = 10 and a = 1.25.

The independence chain MH algorithm can then be employed to estimate
probit, logit and robit models for binary data using the likelihood in (1.7)
with parameter vector θ = β, or ordinal models using likelihood (1.8) written
in terms of the transformed cutpoints in (1.9) whereby the parameter vector
θ is given by θ = (β′, δ′)′.

1.3.2.2 Gibbs Sampling and Data Augmentation. Gibbs sampling (see [9]) is
an MCMC method for simulation from a distribution when its full conditional
densities have known form. To review the approach, suppose there are three
parameter blocks θ1, θ2, and θ3 with joint density π(θ1, θ2, θ3|y). The Gibbs
sampler produces draws {θ1, θ2, θ3} ∼ π(θ1, θ2, θ3|y) by sequentially draw-
ing from the set of full conditional densities π(θ1|y, θ2, θ3), π(θ2|y, θ1, θ3) and
π(θ3|y, θ1, θ2). Under mild conditions, it can be shown that the Markov chain
formed by the Gibbs sampler has a limiting invariant distribution that is the
distribution of interest π(θ1, θ2, θ3|y). This means that draws obtained by
Gibbs sampling after the initial burn-in period, can be viewed as coming from
π(θ1, θ2, θ3|y). Some authors have likened the way in which the Gibbs sampler
traverses the parameter space to the way a rook moves in chess. In addition,
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the particular order in which the full conditional densities are sampled does
not affect the limiting distribution. A thorough review of the method and its
applications in econometrics is offered in [6].

The application of Gibbs sampling to models for binary and ordinal data
is complicated by the fact that the posterior and its full conditional densities
are not of known form. However, a method known as data augmentation can
be used to overcome this problem.

The idea behind data augmentation is simple. Instead of focusing on the
intractable posterior density

π(θ|y) ∝ f(y|θ)π(θ),

we choose to work with π(θ, w|y), a density judiciously augmented with w
in such a way that the full-conditionals π(θ|y, w) and π(w|y, θ) are tractable
and can be sampled directly. As a result, a Gibbs sampler constructed using
sequential sampling from π(θ|y, w) and π(w|y, θ) will produce draws {θ, w} ∼
π(θ, w|y).

But how do we relate the draws {θ, w} from π(θ, w|y) to our original goal
of sampling θ ∼ π(θ|y)? This is easily done by only collecting the draws of
θ and simply ignoring w. The approach works because by the properties of
cdfs, given two vectors of constants aθ and aw conformable with θ and w,
respectively, the marginal cdf is obtained from the joint cdf as

F (aθ) ≡ Pr(θ ≪ aθ) = lim
aw→∞

F (aθ, aw) ≡ Pr(θ ≪ aθ, w ≪ ∞),

where ‘≪’ is used to denote element-by-element weak inequality comparison.
The condition w ≪ ∞ always holds and in this sense we “simply ignore” w
to obtain draws θ ∼ π(θ|y) from {θ, w} ∼ π(θ, w|y).

Having presented the theory behind data augmentation, we now discuss its
specific application to the models considered in this chapter.

EXAMPLE 1.4

The binary probit model can be estimated easily, as shown in [1], if we
were to introduce the latent z = (z1, . . . , zn)

′ from equation (1.2) into
our MCMC simulation algorithm. Specifically, instead of working with
π(β|y), we specify a Gibbs sampler to simulate the augmented posterior
π(β, z|y), which can be written as

π (β, z|y) ∝ f (y|β, z) f (β, z)

= f (y|β, z) f (z|β)π (β)

=

{

n
∏

i=1

f (yi|zi)
}

f (z|β)π (β) .

(1.10)
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Note that the last line of (1.10) involves terms that are easy to evaluate.
In particular, f (yi|zi) = 1{zi ∈ Bi}, where

Bi =

{

(0,∞) if yi = 1,
(−∞, 0] if yi = 0,

(1.11)

which follows from the relationship between yi and zi in binary data
models. Note that conditionally on zi, yi does not depend on β. In
addition, f(z|β) = fN(z|Xβ, In), where X = (x′

1, . . . , x
′
n)

′ is the matrix
of covariates and In denotes the n × n identity matrix; this follows
from the latent variable representation of the probit model, namely zi =
x′
iβ + νi with νi ∼ N(0, 1) for i = 1, . . . , n. Finally, π (β) is the prior

distribution on β which we assume to be fN (β|β0, B0), i.e. β is assumed
to be a priori normally distributed, i.e. β ∼ N(β0, B0).

A Gibbs sampler now can be easily constructed to explore π (β, z|y)
because the full conditional densities π (β|y, z) and π (z|y, β) are of
known form. Specifically, π (β|y, z) is proportional to the terms in (1.10)
that involve β so that π (β|y, z) ∝ f (z|β)π (β), which technically does
not depend on y. Because both f (z|β) and π (β) are normal, the full
conditional is also normal and therefore we draw

β|y, z ∼ N(β̂, B̂),

where B̂ = (B−1
0 +X ′X)−1 and β̂ = B̂(B−1

0 β0 + X ′z). Details of the
derivation are considered in Exercise 1.3.

The density π (z|y, β) is proportional to the terms in (1.10) that in-
volve z so that

π (z|y, β) ∝
{

n
∏

i=1

1{zi ∈ Bi}
}

fN (z|Xβ, In)

=
n
∏

i=1

[1{zi ∈ Bi}fN(zi|x′
iβ, 1)] ,

whereby z|y, β is easily sampled by drawing zi, i = 1, . . . , n, from ap-
propriately truncated normal densities

zi|yi, β ∼ TNBi
(x′

iβ, 1),

where the region of truncation Bi is defined in (1.11).

EXAMPLE 1.5

The t-link (robit) model can be estimated by extending the data aug-
mentation approach presented in Example 1.4. The discussion follows
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[1] and rests on the result (see, e.g., [2]) that the t distribution can be
represented as a scale mixture of normals. Specifically, if for i = 1, . . . , n,
λi has a gamma distribution

λi ∼ G(τ/2, τ/2), (1.12)

and conditionally on λi, we have

zi|λi ∼ N(x′
iβ, 1/λi), (1.13)

then marginally of λi, zi is distributed

zi ∼ Tτ (x
′
iβ, 1).

Therefore, letting λ = (λ1, . . . , λn)
′, we can consider the augmented

posterior

π(β, z, λ|y) ∝ f (y|β, z, λ) f (β, z, λ)

= f (y|β, z, λ) f (z|β, λ) π(β)π(λ)

=

{

n
∏

i=1

f (yi|zi)
}

f (z|β, λ)π(β)π(λ),
(1.14)

where f (yi|zi) = 1{zi ∈ Bi} as before, f (z|β, λ) = fN(z|Xβ,Λ−1) with
Λ = diag(λ) which follows from (1.13), π(β) = fN(β|β0, B0) is the prior
on β, and π(λ) is given by the product of n independent gamma densities
stemming from (1.12)

π(λ) =

n
∏

i=1

fG(λi|τ/2, τ/2).

It is then quite straightforward to show that the Gibbs sampler for
simulating from π(β, z, λ|y) can be constructed by sequentially drawing
from the following full conditionals

β|z, λ ∼ N(β̂, B̂),

with B̂ = (B−1
0 +X ′ΛX)−1 and β̂ = B̂(B−1

0 β0 +X ′Λz),

zi|y, β, λi ∼ TNBi
(x′

iβ, λ
−1
i ), i = 1, . . . , n,

and

λi|y, β, z ∼ G

(

τ + 1

2
,
τ + (zi − x′

iβ)
2

2

)

, i = 1, . . . , n.
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EXAMPLE 1.6

The logit model can be estimated by pursuing a new data augmentation
scheme that has not been exploited in the literature. Because the logistic
distribution can be written as a scale mixture of normals with respect
to the Kolmogorov distribution ([2], [22]), we can write that

fL(s|µ) =
∫

fN(s|µ, 4κ2)fK(κ)dκ (1.15)

where fL(s|µ) denotes the density of a random variable that has a logis-
tic distribution around µ and variance π2/3, and fK(κ) represents the

Kolmogorov density fK(κ) = 8κ
∑∞

j=1(−1)j+1j2e−2j2κ2

. This implies,
analogously to Example 1.6, that if κi has a Kolmogorov distribution
and conditionally on κi, zi|κi ∼ N(x′

iβ, 4κ
2
i ), then marginally of κi, zi

has logistic density fL(zi|x′
iβ).

Therefore, letting κ = (κ1, . . . , κn)
′, we can consider the augmented

posterior

π(β, z, κ|y) ∝ f (y|β, z, κ) f (β, z, κ)

= f (y|β, z, κ) f (z|β, κ)π(β)π(κ)

=

{

n
∏

i=1

f (yi|zi)
}

f (z|β, κ)π(β)π(κ).
(1.16)

where f (yi|zi) = 1{zi ∈ Bi}, f (z|β, κ) = fN (z|Xβ,K) with K =
diag(4κ2), π(β) = fN (β|β0, B0), and π(κ) =

∏n
i=1 fK(κi).

The resulting Gibbs sampler for simulating from π(β, z, κ|y) is con-
structed by sequentially drawing from the following full conditionals

β|z, κ ∼ N(β̂, B̂),

with B̂ = (B−1
0 +X ′K−1X)−1 and β̂ = B̂(B−1

0 β0 +X ′K−1z),

zi|y, β, κi ∼ TNBi
(x′

iβ, 4κ
2
i ), i = 1, . . . , n,

and
κi|y, β, zi ∼ f(κi|zi, β), i = 1, . . . , n, (1.17)

where f(κi|zi, β) does not belong to a known family of distributions.
However, a very convenient result can be obtained by representing this
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distribution in terms of Bayes’ formula as

f(κi|zi, β) =
f(zi|β, κi)f(κi)

∫

f(zi|β, κi)f(κi)dκi

=
fN (zi|x′

iβ, 4κ
2
i )fK(κi)

fL(zi|x′
iβ)

.

(1.18)

The last line in (1.18) follows by recognizing that the numerator densities
are Gaussian and Kolmogorov, and the denominator, by equation (1.15),
is simply the logistic density. Therefore, the unknown f(κi|zi, β) can
now be represented very simply in terms of other well-known densities.

The fact that f(κi|zi, β) can be evaluated explicitly means that one
can also evaluate the corresponding cdf

Fκ|z,β(κi|zi, β) =
∫ κi

0

f(s|zi, β)ds.

In turn, Fκ|z,β(κi|zi, β) can be utilized to produce the draws needed

in (1.17) by solving κi = F−1
κ|z,β(u), where u ∼ U(0, 1) is a uniform

random variable on the unit interval. The latter technique is known as
the inverse cdf method and follows because

Pr(κi ≤ a) = Pr(F−1
κ|z,β(u) ≤ a) = Pr(u ≤ Fκ|z,β(a)) = Fκ|z,β(a).

This completes the proposed Gibbs sampling scheme for logit models.
However, to provide additional intuition about the behavior of f(κi|zi, β)
and compare it to the Kolmogorov distribution fK(κi), Figure 1.4 plots
f(κi|zi, β) for two settings of zi−x′

iβ. The figure reveals that when zi is
close to the mean x′

iβ the mass of the distribution is closer to the origin
than when zi is far (in absolute terms) from x′

iβ. This is to be expected
because κi enters the conditional variance of zi.

EXAMPLE 1.7

The analysis of the ordinal probit model is similar to the cases considered
in the preceding examples. In particular, given the priors β ∼ N (β0, B0)
and δ ∼ N (d0, D0), the augmented posterior distribution is given by

π (β, δ, z|y) ∝ f (y|β, δ, z) f(z|β)π(β)π(δ)

=

{

n
∏

i=1

f (y|δ, zi)
}

f(z|β)π(β)π(δ),
(1.19)

where f(yi|δ, zi) = 1{γj−1 < zi ≤ γj}, the correspondence between
γ and δ is determined by (1.9), and the cutpoint index j is given by
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Figure 1.4 Behavior of the density f(κi|zi, β) relative to fK(κi).

the realization of yi. Furthermore, f(z|β) = fN (z|Xβ, In), π(β) =
fN (β|β0, B0), and π(δ) = fN (δ|d0, D0).

It has been noted in the literature that in order to design an efficient
MCMC sampler for the ordinal probit model, δ and z must be simulated
jointly, not conditionally on each other. The reason that conditional
sampling does not mix well is that z and δ (which determines the values
of γ) constrain each other through the restrictions {γy[i]−1 < zi < γy[i]},
whereby the sampler can only slowly explore the posterior distribution.
Several alternatives for joint sampling are reviewed in [13], and the fol-
lowing simulation scheme is suggested.

1. Sample δ, z|y, β in one block as follows:

(a) Sample δ|y, β marginally of z by drawing δp ∼ q(δ|y, β) from a

proposal density q(δ|y, β) = fTω
(δ|δ̂, D̂), where

δ̂ = argmax
δ

ln f(y|β, δ) and D̂ = −
[

∂2 ln f(y|β, δ)
∂δ∂δ′

]−1
∣

∣

∣

∣

∣

δ=δ̂

.

Accept δp with probability

αMH(δ, δp) = min

{

1,
f(y|β, δp)π(δp)
f(y|β, δc)π(δc)

q(δc|y, β)
q(δp|y, β)

}

,

otherwise repeat the current value δc.
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(b) Sample zi|y, β, δ ∼ TN(γj−1,γj) (x
′
iβ, 1) for i = 1, . . . , n, where γ is

obtained by the one-to-one mapping relating γ and δ.

2. Sample β|z ∼ N(β̂, B̂) with

B̂ = (B−1
0 +X ′X)−1 and β̂ = B̂(B−1

0 β0 +X ′z).

In Step 1 of this algorithm, the degrees of freedom parameter ω is taken
to be a low number such as 5 or 10 to ensure that the proposal density
has sufficiently heavy tails. Grouping δ and z into a single sampling
block dramatically improves the mixing of the Markov chain.

We complete the discussion of data augmentation by emphasizing its practical
appeal. For instance, data augmentation is often the only viable estimation
approach in a variety of multivariate and hierarchical models. Maximum
likelihood estimation becomes infeasible in those settings owing to the in-
tractability of the likelihood function. However, data augmentation allows us
to circumvent this difficulty by simulating from well-known distributions with-
out having to evaluate the likelihood. This has enabled inference in difficult
settings such as multivariate and multinomial probit, mixed logit, multivari-
ate ordinal probit, copula models, panel data models, models with incidental
truncation, treatment models, and many others.

1.3.3 Marginal Effects

Having estimated the parameters of a model, one is typically interested in
the practical implications of those estimates. However, interpretation of the
parameter estimates is complicated by the nonlinearity of the models we
have considered. In binary data models, for example, E(yi|xi, β) = Pr(yi =
1|xi, β) = F (x′

iβ). Therefore, the marginal effect of changing some continuous
covariate in xi, say xh, is not simply given by βh. This can be easily seen by
taking the derivative of Pr(yi = 1|xi, β) with respect to xh

∂ Pr(yi = 1|xi, β)

∂xh
=

∂F (x′
iβ)

∂xh
= f(x′

iβ)βh,

and hence the marginal effect of xh depends on βh, but also on all of the
covariates in xi, all of the parameters in β, and will differ with the choice of
cdf F (·) and respective pdf f(·). Table 1.1 gives the choice probability and
marginal effects for the three commonly used binary data models.

Given a specific model, there are several approaches to compute the average
marginal effect of covariate xh. One approach is to evaluate the marginal
effect using the sample average of the regressors x̄i and the point estimate
β̂, i.e. f(x̄′

iβ̂)β̂h. However, this average effect may not represent the effect
in the population well because f(·) is a non-linear function and by Jensen’s

inequality f(x̄′
iβ̂) 6= f(x′

iβ̂). Therefore, a more reasonable approach would be
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Model Probability P (yi = 1|xi, β)) Marginal Effect of xh

Logit FL(x
′

iβ) =
e
x′

i
β

1+e
x′

i
β

fL(x
′

iβ)βh

Probit Φ(x′

iβ) =
∫ x′

iβ

−∞
φ(z)dz φ(x′

iβ)βh

t-link FTτ (x
′

iβ) =
∫ x′

iβ

−∞
fTτ (t)dt fTτ (x

′

iβ)βh

Table 1.1 Marginal effects in binary data models.

to calculate the sample average of the marginal effects

f(x′
iβ̂)β̂h = n−1

n
∑

i=1

f(x′
iβ̂)β̂h.

Even though this quantity is better than computing f(x̄′
iβ̂)β̂h as suggested

in [26], it has an important drawback: it does not account for the variability
in β. For this reason, [8] and [13] suggest that the average covariate effect
should be computed by averaging over both the covariates and parameters.
If estimation is done by MCMC simulation, one can use draws β(m) ∼ π(β|y)
to construct the average covariate effect as follows

f(x′
iβ)βh =

1

nM

n
∑

i=1

M
∑

m=1

f
(

x′
iβ

(m)
)

β
(m)
h .

Note that unlike the earlier quantities we considered, f(x′
iβ)βh produces an

estimate of the average effect that accounts for variability in both xi and β.

1.4 APPLICATIONS

1.4.1 Women’s Labor Force Participation

We apply the techniques of this chapter to study the determinants of women’s
labor force participation, a topic that has been extensively studied because of
the large increases in women’s participation and hours of work in the post-
war period. For instance there has been a seven-fold increase in the partic-
ipation rate of married women since the 1920s. Understanding labor force
participation and entry and exit decisions is a fundamental prerequisite for
understanding wages because wages are not observed for women who do not
work.

The data set used in this application has been studied in [20] and [7]. The
sample consists of 753 married women, 428 of whom were employed. The
variables in the data set are summarized in Table 1.2.
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Covariate Explanation Mean SD

KLT6 number of kids under 6 years old 0.28 0.52
KGE6 number of kids 6–18 years old 1.35 1.32
NWINC estimated nonwife income (1975, in $10,000) 2.01 1.16
MEDU mother’s years of schooling 9.25 3.37
FEDU father’s years of schooling 8.81 3.57
HEDU husband’s years of schooling 12.49 3.02
AGE woman’s age in years 42.54 8.07
EXPER actual labor market experience in years 10.63 8.07

Table 1.2 Covariates in the women’s labor supply example.

We implemented the techniques developed in this chapter to estimate pro-
bit, logit, and t-link models of the binary participation decision. Estimation
was carried out by the MCMC simulation methods discussed in Section 1.3.2
and our results are summarized in Table 1.3.

Probit t-link Logit
Covariate Mean SD Mean SD Mean SD

1 1.1758 0.4358 1.1737 0.4586 1.3931 0.6188
KLT6 -0.7964 0.1115 -0.8285 0.1210 -1.2476 0.1847
KGE6 0.0346 0.0415 0.0362 0.0443 0.0763 0.0695
NWINC -0.0773 0.0484 -0.0817 0.0531 -0.1384 0.0825
MEDU 0.0320 0.0184 0.0339 0.0197 0.0580 0.0306
FEDU 0.0143 0.0175 0.0158 0.0189 0.0250 0.0300
HEDU 0.0251 0.0188 0.0265 0.0207 0.0476 0.0326
AGE -0.0517 0.0078 -0.0534 0.0083 -0.0769 0.0117
EXPER 0.0745 0.0074 0.0796 0.0084 0.1270 0.0138

Table 1.3 Parameter estimates in the women’s labor force participation
application.

The estimates in Table 1.3 are consistent with the predictions of economic
theory. For example, having young children reduces labor force participation
as evidenced by the negative mean and a 95% credibility interval that lies
below zero, but older children have little impact on the mother’s decision to
work. Again, consistent with economic theory, higher non-wife income and
lower parents’ and husband’s schooling reduce participation. The table also
shows that age has a strong negative effect, which is consistent with cohort and
life-cycle effects, whereas experience has a strong positive effect on probability
of working, which is consistent with increases in productivity as experience
grows.
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1.4.2 An Ordinal Model of Educational Attainment

We now consider the ordinal probit model of educational attainment studied
in [13]. Educational attainment has been the subject of a large literature be-
cause of its implications for earnings, economic growth, and social well-being.
The setting is suitable for ordinal modeling because the dependent variable
is naturally categorized by measurable thresholds into a number of distinct
groups. This application considers the following four ordered outcomes: (1)
less than a high school education, (2) high school degree, (3) some college or
associate’s degree, and (4) college or graduate degree. The data are obtained
from the National Longitudinal Survey of Youth (NLSY79).

In this study it is of interest to examine the effect of family background
and individual variables on educational attainment. The family background
variables included in the data set are: the highest grade completed by the
individual’s father and mother, whether the mother worked, square root of
family income, an indicator for whether the youth lived in an urban area,
and an indicator for whether the youth lived in the South. The individual
variables include gender and race, as well as three indicator variables that
control for age cohort affects. The sample is restricted to those cohorts that
were between 14 and 17 years old in 1979. The sample is restricted to include
only individuals whose records have all relevant variables. Additionally, the
sample excludes disabled individuals and those who report more than 11 years
of education at age 15. The resulting sample consists of 3923 individuals.

The model was estimated by the MCMC simulation techniques discussed in
Section 1.3.2. The results are presented in Table 1.4. The coefficient estimates
in the table are consistent with other findings in the literature. Parental
education and income have a positive effect on educational attainment, as
might be expected. A priori, the effect of mother’s labor force participation is
theoretically ambiguous – on the one hand, a mother’s work force participation
could be detrimental due to reduced parental supervision, but on the other, it
provides a positive example for her children to follow. The empirical findings
in Table 1.4 indicate that the net effect is positive, although it is not precisely
estimated. Conditionally on the remaining covariates, we also see that blacks
and individuals from the South have higher educational attainment.

Following [13], we computed the effect of an increase in family income
on educational outcomes following the discussion in Section 1.3.3. For the
overall sample, the effect of a $1000 increase in family income is to lower
the probability of dropping out of high school by approximately 0.0050, lower
the probability of only obtaining a high school degree by 0.0006, but increase
the probability of having some college or associate’s degree by 0.0020 and
increase the probability of getting a college or graduate degree by 0.0036.
We also computed these effects for specific subsamples that are of interest.
For the subsample of females, the effects of an income increase on the four
outcome probabilities were comparable at approximately −0.0048, −0.0009,
0.0019, and 0.0038, respectively. For the subsample of blacks, the effects of
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Parameter Covariate Mean SD

β Intercept -1.34 0.09
Family income (sq. rt.) 0.14 0.01
Mother’s education 0.05 0.01
Father’s education 0.07 0.01
Mother worked 0.03 0.04
Female 0.16 0.04
Black 0.15 0.04
Urban -0.05 0.04
South 0.05 0.04
Age cohort 2 -0.03 0.05
Age cohort 3 0.00 0.06
Age cohort 4 0.23 0.06

δ (transformed cutpoint) 0.08 0.02
(transformed cutpoint) -0.28 0.03

Table 1.4 Parameters estimates in the educational attainment application.

income change were somewhat stronger – in that subsample, an increase of
$1000 in family income changed the four educational outcome probabilities
by −0.0060, −0.0009, 0.0026, and 0.0043, respectively.

1.5 CONCLUSIONS

This chapter has introduced the theory behind binary and ordinal models
in economics, and has examined their estimation by both maximum likeli-
hood and Bayesian simulation methods. We have reviewed several existing
MCMC algorithms and have proposed a new data augmentation method for
the estimation of logit models. The ability to implement data augmentation
techniques makes it possible to extend these techniques and estimate models
in which the likelihood function is intractable.

The methods are examined in two applications dealing with labor force
participation and educational attainment. The applications illustrate that
the models and estimation methods are practical and can uncover interesting
features in the data.

EXERCISES

1.1 The cdf of the logistic distribution is given by

FL(ν) =
(

1 + e−ν
)−1

=
eν

1 + eν
.
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Show that the logistic pdf, fL(ν), can be written as

fL(ν) = FL(ν)
[

1− F(ν)
]

.

1.2 Suppose the random utility model is given by

Uij = x′
iβj + εij , i = 1, . . . , n, j = 0, 1.

Starting with equation (1.1), show that if εi0 and εi1 are independent and
identically distributed as extreme value type I with density

fEV (ε) = e−εe−e−ε

and cumulative distribution function

FEV (ε) = e−e−ε

,

then (1.1) gives rise to the logistic outcome probability

Pr(yi = 1|β) = 1

1 + e−x′

i
β
,

where β = β1 − β0.

1.3 Consider the probit model and assume the prior β ∼ N(β0, B0). Show
that given the latent data z, the full conditional distribution for β is

β|y, z ∼ N(β̂, B̂),

where B̂ = (B−1
0 +X ′X)−1 and β̂ = B̂(B−1

0 β0 +X ′z).
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PROBLEM SOLUTIONS

SOLUTIONS FOR CHAPTER 1

1.1 Taking the derivative of FL(ν) = eν/(1 + eν) and employing the product
and chain rules from calculus, we get

fL(ν) =
dFL(ν)

dν

=
eν

1 + eν
− eνeν

(1 + eν)2

=

(

eν

1 + eν

)(

1− eν

1 + eν

)

= F (ν) [1− F (ν)] ,

as required.
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1.2 Working with expression (1.1) and letting β = β1 − β0, we have

Pr(yi = 1|β) = P (Ui1 > Ui0)

= Pr(εi0 < εi1 + x′
iβ)

=

∫ ∞

−∞

FEV (εi1 + x′
iβ) fEV (εi1) dεi1

=

∫ ∞

−∞

exp
(

−e−(εi1+x′

iβ)
)

e−εi1 exp (−e−εi1) dεi1

=

∫ ∞

−∞

exp
(

−e−εi1 − e−(εi1+x′

iβ)
)

e−εi1 dεi1

=

∫ ∞

−∞

exp
(

−e−εi1
(

1 + e−x′

iβ
))

e−εi1 dεi1

Letting t = e−εi1 , we have that dt = −e−εi1dεi1. As εi1 → ∞, t → 0 and as
εi1 → −∞, t → ∞. Therefore, we can rewrite the integral as

Pr(yi = 1|β) =

∫ 0

∞

− exp
(

−t
(

1 + e−x′

iβ
))

dt

=

∫ ∞

0

exp
(

−t
(

1 + e−x′

iβ
))

dt

= − 1

1 + e−x′

i
β
exp

(

−t
(

1 + e−x′

iβ
))∣

∣

∣

∞

t=0

= − 1

1 + e−x′

i
β
(0 − 1)

=
1

1 + e−x′

i
β

as required. A more general version of the proof for the case of multinomial
outcomes is available in [25].

1.3 The full conditional distribution π(β|y, z) is proportional to f(z|β)π(β)
and its kernel can be written as

π(β|y, z) ∝ exp

[

−1

2

{

(z −Xβ)
′
(z −Xβ) + (β − β0)

′
B−1

0 (β − β0)
}

]

∝ exp

[

−1

2

{

−z′Xβ − β′X ′z + β′X ′Xβ + β′B−1
0 β − β′B−1

0 β0 − β′
0B

−1
0 β

}

]

,
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where we have omitted terms that do not involve β. Collecting terms and
using the definitions of B̂ and β̂, we have that π(β|y, z) is proportional to

exp

[

−1

2

{

β′
(

X ′X +B−1
0

)

β − β′
(

X ′z +B−1
0 β0

)

−
(

z′X + β′
0B

−1
0

)

β
}

]

= exp

[

−1

2

{

β′B̂−1β − β′B̂−1β̂ − β̂′B̂−1β
}

]

Adding and subtracting β̂′B̂−1β̂ inside the curly braces, we can complete the
square and write

π(β|y, z) ∝ exp

[

−1

2

{

(

β − β̂
)′

B̂−1
(

β − β̂
)

− β̂′B̂−1β̂

}]

∝ exp

[

−1

2

{

(

β − β̂
)′

B̂−1
(

β − β̂
)

}]

,

where the last line follows by recognizing that β̂′B̂−1β̂ does not involve β and
can therefore be absorbed in the constant of proportionality. The result is the
kernel of the Gaussian density and hence we have shown that

β|y, z ∼ N(β̂, B̂)

as required.




