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Editorial
by Simon Urbanek

On behalf of the editorial board, I am pleased to present Volume 15 Issue 2 of the R Journal.
Behind the scenes, several people assist with the journal operations. Mitchell O’Hara-

Wild continues to work on infrastructure, H. Sherry Zhang continues to develop the rjtools

package under the direction of Professor Dianne Cook. In addition, articles in this issue
have been carefully copy edited by Adam Bartonicek and Chase Robertson.

In this issue

This issue features 18 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are

Graphics and Visualisation

• langevitour: smooth interactive touring of high dimensions, demonstrated with
scRNA-Seq data

• ggdensity: Improved Bivariate Density Visualization in R
• Taking the Scenic Route: Interactive and Performant Tour Animations
• vivid: An R package for Variable Importance and Variable Interactions Displays for

Machine Learning Models

Multivariate Statistics

• Generalized Estimating Equations using the package glmtoolbox
• genpathmox: An R Package to Tackle Numerous Categorical Variables and Hetero-

geneity in Partial Least Squares Structural Equation Modeling

Bayesian Inference

• bqror: An R package for Bayesian Quantile Regression in Ordinal Models
• A framework for estimating and visualising excess mortality during the COVID-19

pandemic

Social Sciences

• PINstimation: An R Package for Estimating Models of Probability of Informed Trading
• mutualinf: An R Package for Computing and Decomposing the Mutual Information

Index of Segregation
• Three-way Correspondence Analysis in R
• Difficult Choices? Estimating Heteroskedastic and Instrumental Variable Models for

Binary Dependent Variables in R

Mixture Models and Optimization

• nlstac: Non-gradient Separable Nonlinear Least Squares Fitting
• Univariate Gaussian mixtures in R
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Clustering and Graphs

• Identifying Counterfactual Queries with the R package cfid
• clustAnalytics: An R Package for Assessing Stability and Significance of Clusters in

Networks

Other

• hydrotoolbox: a Package for Hydrometeorological Data Management
• EviewsR: an R Package for Dynamic and Reproducible Research Using EViews, R, R

Markdown and Quarto

Simon Urbanek
University of Auckland

https://journal.r-project.org
r-journal@r-project.org
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bqror: An R package for Bayesian

Quantile Regression in Ordinal Models
by Prajual Maheshwari and Mohammad Arshad Rahman

Abstract This article describes an R package bqror that estimates Bayesian quantile regression in
ordinal models introduced in Rahman (2016). The paper classifies ordinal models into two types
and offers computationally efficient yet simple Markov chain Monte Carlo (MCMC) algorithms for
estimating ordinal quantile regression. The generic ordinal model with 3 or more outcomes (labeled
ORI model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm,
whereas an ordinal model with exactly 3 outcomes (labeled ORII model) is estimated using a Gibbs
sampling algorithm only. In line with the Bayesian literature, we suggest using the marginal likelihood
for comparing alternative quantile regression models and explain how to compute it. The models
and their estimation procedures are illustrated via multiple simulation studies and implemented in
two applications. The article also describes several functions contained within the bqror package, and
illustrates their usage for estimation, inference, and assessing model fit.

1 Introduction

Quantile regression defines the conditional quantiles of a continuous dependent variable as a function
of the covariates without assuming any error distribution (Koenker and Bassett 1978). The method
is robust and offers several advantages over least squares regression such as desirable equivariance
properties, invariance to monotone transformation of the dependent variable, and robustness against
outliers (Koenker 2005; Davino, Furno, and Vistocco 2014; Furno and Vistocco 2018). However,
quantile regression with discrete outcomes is more complex because quantiles of discrete data cannot
be obtained through a simple inverse operation of the cumulative distribution function (cd f ). Besides,
discrete outcome (binary and ordinal) modeling requires location and scale restrictions to uniquely
identify the parameters (see Section 2 for details). Kordas (2006) estimated quantile regression with
binary outcomes using simulated annealing, while Benoit and Van den Poel (2010) proposed Bayesian
binary quantile regression where a working likelihood for the latent variable was constructed by
assuming the error follows an asymmetric Laplace (AL) distribution (Yu and Moyeed 2001). The
estimation procedure for the latter is available in the bayesQR package of R software (Benoit and Van
den Poel 2017). A couple of recent works on Bayesian quantile regression with binary longitudinal
(panel) outcomes are Rahman and Vossmeyer (2019) and Bresson, Lacroix, and Rahman (2021).
Extending the quantile framework to ordinal outcomes is more intricate due to the difficulty in
satisfying the ordering of cut-points while sampling. Rahman (2016) introduced Bayesian quantile
analysis of ordinal data and proposed two efficient MCMC algorithms. Since Rahman (2016), ordinal
quantile regression has attracted some attention, such as in Alhamzawi (2016), Alhamzawi and Ali
(2018), Ghasemzadeh, Ganjali, and Baghfalaki (2018), Rahman and Karnawat (2019), Ghasemzadeh,
Ganjali, and Baghfalaki (2020), and Tian et al. (2021).

Ordinal outcomes occur in a wide class of applications in economics, finance, marketing, and the
social sciences. Here, ordinal regression (e.g. ordinal probit, ordinal logit) is an important tool for
modeling, analysis, and inference. Given the prevalence of ordinal models in applications and the
recent theoretical developments surrounding ordinal quantile regression, an estimation package is
essential so that applied econometricians and statisticians can benefit from a more comprehensive data
analysis. At present, no statistical software (such as R, MATLAB, Python, Stata, SPSS, and SAS) have
any package for estimating quantile regression with ordinal outcomes. The current paper fills this gap
in the literature and describes the implementation of bqror package (version 1.6.0) for estimation and
inference in Bayesian ordinal quantile regression.

The bqror package offers two MCMC algorithms. Ordinal model with 3 or more outcomes
is estimated through a combination of Gibbs sampling (Casella and George 1992) and Metropolis-
Hastings (MH) algorithm (S. Chib and Greenberg 1995). The method is implemented in the function
quantregOR1. For ordinal models with exactly 3 outcomes, the package presents a Gibbs sampling
algorithm that is implemented in the function quantregOR2. We recommend using this procedure
for an ordinal model with 3 outcomes, since its simpler and faster. Both functions, quantregOR1 and
quantregOR2, report typical posterior summaries such as the mean, standard deviation, 95% credible
interval, and inefficiency factor of the model parameters. To compare alternative quantile regression
models, we recommend using the marginal likelihood over the deviance information criterion (DIC).
This is because the “Bayesian approach” to compare models is via the marginal likelihood (Siddhartha
Chib 1995; Siddhartha Chib and Jeliazkov 2001). So, the bqror package also provides functions for
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computing the marginal likelihood. Additionally, the package includes functions for calculating the
covariate effects and example codes to produce trace plots of MCMC draws. Lastly, this paper uses
the bqror package to demonstrate the estimation of quantile ordinal models on simulated data and
real-life applications.

2 Quantile regression in ordinal models

Ordinal outcomes are common in a wide class of applications in economics, finance, marketing, social
sciences, statistics in medicine, and transportation. In a typical study, the observed outcomes are
ordered and categorical; so for the purpose of analysis scores/numbers are assigned to each outcome
level. For example, in a study on public opinion about offshore drilling (Mukherjee and Rahman
2016), responses may be recorded as follows: 1 for ‘strongly oppose’, 2 for ‘somewhat oppose’, 3 for
‘somewhat support’, and 4 for ‘strongly support’. The numbers have an ordinal meaning but have
no cardinal interpretation. We cannot interpret a score of 2 as twice the support compared to a score
of 1, or the difference in support between 2 and 3 is the same as that between 3 and 4. With ordinal
outcomes, the primary modeling objective is to express the probability of outcomes as a function of the
covariates. Ordinal models that have been extensively studied and employed in applications include
the ordinal probit and ordinal logit models (Johnson and Albert 2000; Greene and Hensher 2010), but
they only give information about the average probability of outcomes conditional on the covariates.

Quantile regression with ordinal outcomes can be estimated using the monotone equivariance
property and provides information on the probability of outcomes at different quantiles. In the spirit
of Albert and Chib (1993), the ordinal quantile regression model can be presented in terms of an
underlying latent (or unobserved) variable zi as follows:

zi = x0i bp + ei, 8 i = 1, · · · , n, (1)

where x0i is a 1 ⇥ k vector of covariates, bp is a k ⇥ 1 vector of unknown parameters at the p-th quantile,
ei follows an AL distribution i.e., ei ⇠ AL(0, 1, p), and n denotes the number of observations. Note
that unlike the Classical (or Frequentist) quantile regression, the error is assumed to follow an AL
distribution in order to construct a (working) likelihood (Yu and Moyeed 2001). The latent variable zi
is related to the observed discrete response yi through the following relationship,

gp,j�1 < zi  gp,j ) yi = j, 8 i = 1, · · · , n; j = 1, · · · , J, (2)

where gp = (gp,0 = �•, gp,1, . . . , gp,J�1, gp,J = •) is the cut-point vector and J denotes the number
of outcomes or categories. Typically, the cut-point gp,1 is fixed at 0 to anchor the location of the
distribution required for parameter identification (Jeliazkov and Rahman 2012). Given the observed
data y = (y1, · · · , yn)0, the joint density (or likelihood when viewed as a function of the parameters)
for the ordinal quantile model can be written as,

f (y|Qp) =
n

’
i=1

J

’
j=1

P(yi = j|Qp)
I(yi=j) (3)

where Qp = (bp, gp), FAL(·) denotes the cd f of an AL distribution and I(yi = j) is an indicator
function, which equals 1 if yi = j and 0 otherwise.

Working directly with the AL likelihood (3) is not convenient for MCMC sampling. Therefore,
the latent formulation of the ordinal quantile model (1), following Kozumi and Kobayashi (2011), is
expressed in the normal-exponential mixture form as follows,

zi = x0i bp + qwi + t
p

wi ui, 8 i = 1, · · · , n, (4)

where ei = qwi + t
p

wi ui ⇠ AL(0, 1, p), wi ⇠ E(1) is mutually independent of ui ⇠ N(0, 1), N
and E denotes normal and exponential distributions, respectively; q = (1 � 2p)/[p(1 � p)] and
t =

p
2/[p(1 � p)]. Based on this formulation, we can write the conditional distribution of the latent

variable as zi|bp, wi ⇠ N(x0i bp + qwi, t2wi) for i = 1, . . . , n. This allows access to the properties of
normal distribution which helps in constructing efficient MCMC algorithms.

ORI model

The term “ORI model” describes an ordinal model in which the number of outcomes (J) is equal to
or greater than 3, location restriction is imposed by setting gp,1 = 0, and scale restriction is achieved
via constant variance (for a given value of p, variance of a standard AL distribution is constant; see
Rahman (2016)). Note that in contrast to Rahman (2016), our definition of ORI model includes an
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ordinal model with exactly 3 outcomes. The location and scale restrictions are necessary to uniquely
identify the parameters (see Jeliazkov, Graves, and Kutzbach (2008), and Jeliazkov and Rahman (2012)
for further details and a pictorial representation).

During the MCMC sampling of the ORI model, we need to preserve the ordering of cut-points
(gp,0 = �• < gp,1 < gp,2 < . . . < gp,J�1 < gp,J = •). This is achieved by using a monotone
transformation from a compact set to the real line. Many such transformations are available (e.g.,
log-ratios of category bin widths, arctan, arcsin), but the bqror package utilizes the logarithmic
transformation (Albert and Chib 2001; Rahman 2016),

dp,j = ln(gp,j � gp,j�1), 2  j  J � 1. (5)

The cut-points (gp,1, gp,2, · · · , gp,J�1) can be obtained from a one-to-one mapping to (dp,2, · · · , dp,J�1).
With all the modeling ingredients in place, we employ the Bayes’ theorem and express the joint

posterior distribution as proportional to the product of the likelihood and the prior distributions. As
in Rahman (2016), we employ independent normal priors: bp ⇠ N(bp0, Bp0), dp ⇠ N(dp0, Dp0) in the
bqror package. The augmented joint posterior distribution for the ORI model can thus be written as,

p(z, bp, dp, w|y) µ f (y|z, bp, dp, w) p(z|bp, w) p(w) p(bp) p(dp),

µ
n n

’
i=1

f (yi|zi, dp)
o

p(z|bp, w) p(w) p(bp) p(dp),

µ
n

’
i=1

⇢ J

’
j=1

1{gp,j�1 < zi  gp,j} N(zi|x0i bp + qwi, t2wi) E(wi|1)
�

⇥ N(bp|bp0, Bp0) N(dp|dp0, Dp0).

(6)

where in the likelihood function of the second line, we use the fact that the observed yi is independent
of (bp, w) given (zi, dp). This follows from equation (2) which shows that yi given (zi, dp) is determined
with probability 1. In the third line, we specify the conditional distribution of the latent variable and
the prior distribution on the parameters.

The conditional posterior distributions are derived from the augmented joint posterior distribution
(6), and the parameters are sampled as per Algorithm 1. This algorithm is implemented in the bqror

package. The parameter bp is sampled from an updated multivariate normal distribution and the
latent weight w is sampled element-wise from a generalized inverse Gaussian (GIG) distribution. The
cut-point vector dp is sampled marginally of (z, w) using a random-walk MH algorithm. Lastly, the
latent variable z is sampled element-wise from a truncated normal (TN) distribution.

Algorithm 1: Sampling in ORI model.

• Sample bp|z, w ⇠ N(b̃p, B̃p), where,

– B̃�1
p =

✓
Ân

i=1
xi x0

i
t2wi

+ B�1
p0

◆
and b̃p = B̃p

✓
Ân

i=1
xi(zi�qwi)

t2wi
+ B�1

p0 bp0

◆
.

• Sample wi|bp, zi ⇠ GIG (0.5, l̃i, h̃), for i = 1, · · · , n, where,

– l̃i =

✓
zi�x0

i bp
t

◆2
and h̃ =

⇣
q2

t2 + 2
⌘

.

• Sample dp|y, b marginally of w (latent weight) and z (latent data), by generating d0p using a
random-walk chain d0p = dp + u, where u ⇠ N(0J�2, i2D̂), i is a tuning parameter and D̂ denotes
the negative inverse Hessian, obtained by maximizing the log-likelihood with respect to dp.
Given the current value of dp and the proposed draw d0p, return d0p with probability,

aMH(dp, d0p) = min
⇢

1,
f (y|bp, d0p) p(bp, d0p)

f (y|bp, dp) p(bp, dp)

�
;

otherwise repeat the old value dp. The variance of u may be tuned as needed for appropriate
step size and acceptance rate.

• Sample zi|y, bp, gp, w ⇠ TN(gp,j�1,gp,j)(x0i bp + qwi, t2wi) for i = 1, · · · , n, where TN denotes a
truncated normal distribution and gp is obtained via dp using equation (5)
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ORII model

The term “ORII model” is used for an ordinal model with exactly 3 outcomes (i.e., J = 3) where both
location and scale restrictions are imposed by fixing the cut-points. Since there are only 2 cut-points
and both are fixed at some values, the scale of the distribution needs to be free. Therefore, a scale
parameter sp is introduced and the quantile ordinal model is rewritten as follows:

zi = x0i bp + spei = x0i bp + spqwi + spt
p

wi ui, 8 i = 1, · · · , n,
gj�1 < zi  gj ) yi = j, 8 i = 1, · · · , n; j = 1, 2, 3,

(7)

where sp ei ⇠ AL(0, sp, p), (g1, g2) are fixed, and recall g0 = �• and g3 = • . In this formulation,
the conditional mean of zi is dependent on sp which is problematic for Gibbs sampling. So, we
define a new variable ni = spwi ⇠ E(sp) and rewrite the model in terms of ni. In this representation,
zi|bp, sp, ni ⇠ N(x0i bp + qni, t2spni), the conditional mean is free of sp and the model is conducive to
Gibbs sampling.

The next step is to specify the prior distributions required for Bayesian inference. We follow
Rahman (2016) and assume bp ⇠ N(bp0, Bp0) and sp ⇠ IG(n0/2, d0/2); where IG stands for an
inverse-gamma distribution. These are the default prior distributions in the bqror package. Employing
the Bayes’ theorem, the augmented joint posterior distribution can be expressed as,

p(z, bp, n, sp|y) µ f (y|z, bp, n, sp) p(z|bp, n, sp) p(n|sp) p(bp) p(sp),

µ
n n

’
i=1

f (yi|zi, sp)
o

p(z|bp, n, sp) p(n|sp) p(bp) p(sp),

µ
⇢ n

’
i=1

3

’
j=1

1(gj�1 < zi  gj) N(zi|x0i bp + qni, t2spni) E(ni|sp)

�

⇥ N(bp|bp0, Bp0) IG(sp|n0/2, d0/2),

(8)

where the derivations in each step are analogous to those for the ORI model.
The augmented joint posterior distribution, given by equation (8), can be utilized to derive the

conditional posterior distributions and the parameters are sampled as presented in Algorithm 2. This
involves sampling bp from an updated multivariate normal distribution and sampling sp from an
updated IG distribution. The latent weight n is sampled element-wise from a GIG distribution and
similarly, the latent variable z is sampled element-wise from a truncated normal distribution.

Algorithm 2: Sampling in ORII model.

• Sample bp|z, sp, n ⇠ N(b̃p, B̃p), where,

– B̃�1
p =

✓
Ân

i=1
xi x0

i
t2spni

+ B�1
p0

◆
and b̃p = B̃p

✓
Ân

i=1
xi(zi�qni)

t2spni
+ B�1

p0 bp0

◆

• Sample sp|z, bp, n ⇠ IG(ñ/2, d̃/2), where,

– ñ = (n0 + 3n) and d̃ = Ân
i=1(zi � x0i bp � qni)

2/t2ni + d0 + 2 Ân
i=1 ni.

• Sample ni|zi, bp, sp ⇠ GIG(0.5, l̃i, h̃), for i = 1, · · · , n, where,

– l̃i =
(zi�x0

i bp)2

t2sp
and h̃ =

⇣
q2

t2sp
+ 2

sp

⌘

• Sample zi|y, bp, sp, ni ⇠ TN(gj�1,gj)(x0i bp + qni, t2spni) for i = 1, · · · , n, and j = 1, 2, 3.

3 Marginal likelihood

Rahman (2016) employed DIC (Spiegelhalter et al. 2002; Gelman et al. 2013) for model comparison.
However, in the Bayesian framework alternative models are typically compared using the marginal
likelihood or the Bayes factor (Poirier 1995; Greenberg 2012). Therefore, we prefer using the marginal
likelihood (or the Bayes factor) for comparing two or more regression models at a given quantile.

Consider a model Ms with parameter vector Qs. Let f (y|Ms, Qs) be its sampling density and
p(Qs|Ms) be the prior distribution; where s = 1, . . . , S. Then, the marginal likelihood for the model
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Ms is given by the expression, m(y|Ms) =
R

f (y|Qs,Ms)p(Qs|Ms) dQs. The Bayes factor is the ratio

of marginal likelihoods. So, for any two models Mq versus Mr, the Bayes factor, Bqr =
m(y|Mq)
m(y|Mr)

=
R

f (y|Mq ,Qq) p(Qq |Mq) dQqR
f (y|Mr ,Qr) p(Qr |Mr) dQr

, can be easily computed once we have the marginal likelihoods.

Siddhartha Chib (1995) and later Siddhartha Chib and Jeliazkov (2001) showed that a simple and
stable estimate of marginal likelihood can be obtained from the MCMC outputs. The approach is based
on the recognition that the marginal likelihood can be written as the product of likelihood function
and prior density over the posterior density. So, the marginal likelihood m(y|Ms) for model Ms is
expressed as,

m(y|Ms) =
f (y|Ms, Qs)p(Qs|Ms)

p(Qs|Ms, y)
. (9)

Siddhartha Chib (1995) refers to equation (9) as the basic marginal likelihood identity since it holds
for all values in the parameter space, but typically computed at a high density point (e.g., mean,
mode) denoted Q⇤ to minimize estimation variability. The likelihood ordinate f (y|Ms, Q⇤) is directly
available from the model and the prior density p(Q⇤|Ms) is assumed by the researcher. The novel
part is the computation of posterior ordinate p(Q⇤|y,Ms), which is estimated using the MCMC
outputs. Since the marginal likelihood is often a large number, it is convenient to express it on the
logarithmic scale. An estimate of the logarithm of marginal likelihood is given by,

ln m̂(y) = ln f (y|Q⇤) + ln p(Q⇤)� ln p̂(Q⇤|y), (10)

where we have dropped the conditioning on Ms for notational simplicity. The next two subsections
explain the computation of marginal likelihood for the ORI and ORII quantile regression models.

Marginal likelihood for ORI model

We know from Section 2.1 that the MCMC algorithm for estimating the ORI model is defined by the
following conditional posterior densities: p(bp|z, w), p(dp|bp, y), p(w|bp, z), and p(z|bp, dp, w, y).
The conditional posteriors for bp, w, and z have a known form, but that of dp is not tractable and
is sampled using an MH algorithm. Consequently, we adopt the approach of Siddhartha Chib and
Jeliazkov (2001) to calculate the marginal likelihood for the ORI model.

To simplify the computational process (specifically, to keep the computation over a reasonable
dimension), we estimate the marginal likelihood marginally of the latent variables (w, z). Moreover,
we decompose the posterior ordinate as,

p(b⇤p, d⇤p|y) = p(d⇤p|y)p(b⇤p|d⇤p, y),

where Q⇤ = (b⇤p, d⇤p) denotes a high density point. By placing the intractable posterior ordinate first,
we avoid the MH step in the reduced run – the process of running an MCMC sampler with one or
more parameters fixed at some value – of the MCMC sampler. We first estimate p(d⇤p|y) and then the
reduced conditional posterior ordinate p(b⇤p|d⇤p, y).

To obtain an estimate of p(d⇤p|y), we need to express it in a computationally convenient form.
The parameter dp is sampled using an MH step, which requires specifying a proposal density. Let
q(dp, d0p|bp, w, z, y) denote the proposal density for the transition from dp to d0p, and let,

aMH(dp, d0p) = min
⇢

1,
f (y|bp, d0p) p(bp)p(d0p)

f (y|bp, dp) p(bp)p(dp)
⇥

q(d0p, dp|bp, w, z, y)
q(dp, d0p|bp, w, z, y)

�
, (11)

denote the probability of making the move. In the context of the model, f (y|bp, dp) is the likelihood
given by equation (3), p(bp) and p(dp) are normal prior distributions (i.e., bp ⇠ N(bp0, Bp0) and
dp ⇠ N(dp0, Dp0) as specified in Section 2.1), and the proposal density q(dp, d0p|bp, w, z, y) is normal
given by fN(d0p|dp, i2D̂) (see Algorithm 1 in Section 2.1). There are two points to be noted about the
proposal density. First, the conditioning on (bp, w, z, y) is only for generality and not necessary as
illustrated by the use of a random-walk proposal density. Second, since our MCMC sampler utilizes a
random-walk proposal density, the second ratio on the right hand side of equation (11) reduces to 1.

We closely follow the derivation in Siddhartha Chib and Jeliazkov (2001) and arrive at the following
expression of the posterior ordinate,

p(d⇤p|y) =
E1{aMH(dp, d⇤p|bp, w, z, y) q(dp, d⇤p|bp, w, z, y)}

E2{aMH(d⇤p, dp|bp, w, z, y)} , (12)

where E1 represents expectation with respect to the distribution p(bp, dp, w, z|y) and E2 represents
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expectation with respect to the distribution p(bp, w, z|d⇤p, y)⇥ q(d⇤p, dp|bp, w, z, y). The quantities in
equation (12) can be estimated using MCMC techniques. To estimate the numerator, we take the
draw {b

(m)
p , d

(m)
p , w(m), z(m)}M

m=1 from the complete MCMC run and take an average of the quantity
aMH(dp, d⇤p|bp, w, z, y) q(dp, d⇤p|bp, w, z, y), where aMH(·) is given by equation (11) with d0p replaced by
d⇤p, and q(dp, d⇤p|bp, w, z, y) is given by the normal density fN(d⇤p|dp, i2D̂).

The estimation of the quantity in the denominator is tricky. This requires generating an additional
sample (say of H iterations) from the reduced conditional densities: p(bp|w, z), p(w|bp, z), and
p(z|bp, d⇤p, w, y), where note that dp is fixed at d⇤p in the MCMC sampling, and thus corresponds to a
reduced run. Moreover, at each iteration, we generate

d
(h)
p ⇠ q(d⇤p, dp|b(h)p , w(h), z(h), y) ⌘ fN(dp|d⇤p, i2D̂).

The resulting quadruplet of draws {b
(h)
p , d

(h)
p , w(h), z(h)}, as required, is a sample from the distribu-

tion p(bp, w, z|d⇤p, y)⇥ q(d⇤p, dp|bp, w, z, y). With the numerator and denominator now available, the
posterior ordinate p(d⇤p|y) is estimated as,

p̂(d⇤p|y) =
M�1 ÂM

m=1{aMH(d(m)
p , d⇤p|L(m), y) q(d(m)

p , d⇤p|L(m), y)}

H�1 ÂH
h=1{aMH(d⇤p, d

(h)
p |L(h), y)}

. (13)

where L(m) = (b
(m)
p , w(m), z(m)) and L(h) = (b

(h)
p , w(h), z(h)).

The computation of the posterior ordinate p(b⇤p|d⇤p, y) is trivial. We have the sample of H draws
{w(h), z(h)} from the reduced run, which are marginally of bp from the distribution p(w, z|d⇤p, y).
These draws are utilized to estimate the posterior ordinate as,

p̂(b⇤p|d⇤p, y) = H�1
H

Â
h=1

p(b⇤p|d⇤p, w(h), z(h), y). (14)

Substituting the two density estimates given by equations (13) and (14) into equation (10), an estimate
of the logarithm of marginal likelihood for ORI model is obtained as,

ln m̂(y) = ln f (y|b⇤p, d⇤p) + ln
h
p(b⇤p)p(d⇤p)

i
� ln

h
p̂(d⇤p|y) p̂(b⇤p|d⇤p, y)

i
, (15)

where the likelihood f (y|b⇤p, d⇤p) and prior densities are evaluated at Q⇤ = (b⇤p, d⇤p).

Marginal likelihood for ORII model

We know from Section 2.2 that the ORII model is estimated by Gibbs sampling and hence we follow
Siddhartha Chib (1995) to compute the marginal likelihood. The Gibbs sampler consists of four con-
ditional posterior densities given by p(bp|sp, n, z), p(sp|bp, n, z), p(n|bp, sp, z), and p(z|bp, sp, n, y).
However, the variables (n, z) are latent. So, we integrate them out and write the posterior ordinate as
p(b⇤p, s⇤

p |y) = p(b⇤p|y)p(s⇤
p |b⇤p, y), where the terms on the right hand side can be written as,

p(b⇤p|y) =
Z

p(b⇤p|sp, n, z, y)p(sp, n, z|y) dsp dn dz,

p(s⇤
p |b⇤p, y) =

Z
p(s⇤

p |b⇤p, n, z, y)p(n, z|b⇤p, y) dn dz,

and Q⇤ = (b⇤p, s⇤
p ) denotes a high density point, such as the mean or the median.

The posterior ordinate p(b⇤p|y) can be estimated as the ergodic average of the conditional posterior
density with the posterior draws of (sp, n, z). Therefore, p(b⇤p|y) is estimated as,

p̂(b⇤p|y) = G�1
G

Â
g=1

p(b⇤p|s
(g)
p , n(g), z(g), y). (16)

The term p(s⇤
p |b⇤p, y) is a reduced conditional density ordinate and can be estimated with the help

of a reduce run. So, we generate an additional sample (say another G iterations) of {n(g), z(g)} from
p(n, z|b⇤p, y) by successively sampling from p(sp|b⇤p, n, z), p(n|b⇤p, sp, z), and p(z|b⇤p, sp, n, y), where
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note that bp is fixed at b⇤p in each conditional density. Next, we use the draws {n(g), z(g)} to compute,

p̂(s⇤
p |b⇤p, y) = G�1

G

Â
g=1

p(s⇤
p |b⇤p, n(g), z(g), y). (17)

which is a simulation consistent estimate of p(s⇤
p |b⇤p, y).

Substituting the two density estimates given by equations (16) and (17) into equation (10), we
obtain an estimate of the logarithm of marginal likelihood,

ln m̂(y) = ln f (y|b⇤p, s⇤
p ) + ln

h
p(b⇤p)p(s⇤

p )
i
� ln

h
p̂(b⇤p|y) p̂(s⇤

p |b⇤p, y)
i
, (18)

where the likelihood function and prior densities are evaluated at Q⇤ = (b⇤p, s⇤
p ). Here, the likelihood

function has the expression,

f (y|b⇤p, s⇤
p ) =

n

’
i=1

3

’
j=1


FAL

 
gj � x0i b

⇤
p

s⇤
p

!
� FAL

 
gj�1 � x0i b

⇤
p

s⇤
p

!�I(yi=j)
,

where the cut-points g are known and fixed for identification reasons as explained in Section 2.2.

4 Simulation studies

This section explains the data generating process for simulation studies, the functions offered in the
bqror package, and usage of the functions for estimation and inference in ordinal quantile models.

ORI model: data, functions, and outputs

Data Generation: The data for the simulation study of the ORI model is generated from the regression:
zi = x0i b + ei, where b = (�4, 5, 6), (x2, x3) ⇠ U(0, 1), and ei ⇠ AL(0, s = 1, p) for i = 1, . . . , n. Here,
U and AL denote a uniform distribution and an asymmetric Laplace distribution, respectively. The z
values are continuous and are classified into 4 categories based on the cut-points (0, 2, 4) to generate
ordinal values of y, the outcome variable. We follow the above procedure to generate 3 data sets with
500 observations (i.e., n = 500) each. The 3 data sets correspond to the quantile p equaling 0.25, 0.50,
and 0.75, and are stored as data25j4, data50j4, and data75j4, respectively. Note that the last two
letters in the name of the data object (i.e., j4) denote the number of unique outcomes in the y variable.

We now describe the major functions for Bayesian quantile estimation of ORI model, demonstrate
their usage, and note the inputs and outputs of each function.

quantregOR1: The quantregOR1 is the primary function for estimating Bayesian quantile regres-
sion in ordinal models with 3 or more outcomes (i.e., ORI model) and implements Algorithm 1. In the
code snippet below, we first read in the data and then do the following: define the ordinal response
variable (y) and covariate matrix (xMat), specify the number of covariates (k) and number of outcomes
(J), and set the prior means and covariances for bp and dp. We then call the quantregOR1 function
and specify the inputs: ordinal outcome variable (y), covariate matrix including a column of ones
(xMat), prior mean (b0) and prior covariance matrix (B0) for the regression coefficients, prior mean (d0)
and prior covariance matrix (D0) for the transformed cut-points, burn-in size (burn), post burn-in size
(mcmc), quantile (p), the tuning factor (tune) to adjust the MH acceptance rate, and the auto correlation
cutoff value (accutoff). The last input verbose, when set to TRUE will print the summary output.

In the code below, we use a diffuse normal prior bp ⇠ N(0k, 10 ⇤ Ik) where 0k and Ik are matrices
of dimension k ⇥ 1 and k ⇥ k, respectively. The prior distribution can be further diffused (i.e., made
less informative) by increasing the prior variance from 10 to say 100. Besides, the prior variance for dp
should be small, such as 0.25 ⇤ IJ�2, since the distribution is on the transformed cut-points, which is
on the logarithmic scale. If there is a need for prior elicitation, they can be designed from previous
subject based knowledge or by estimating the model on a training sample and then using the results
to form prior distributions (See Greenberg (2012), for examples.)

library(�bqror�)
data("data25j4")
y <- data25j4$y
xMat <- data25j4$x
k <- dim(xMat)[2]
J <- dim(as.array(unique(y)))[1]
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b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 10*diag(k)
d0 <- array(0, dim = c(J-2, 1))
D0 <- 0.25*diag(J - 2)
modelORI <- quantregOR1(y = y, x = xMat, b0, B0, d0, D0, burn = 1125,

mcmc = 4500, p = 0.25, tune = 1, accutoff = 0.5,
verbose = TRUE)

[1] Summary of MCMC draws:

Post Mean Post Std Upper Credible Lower Credible Inef Factor
beta_1 -3.6434 0.4293 -2.8369 -4.5073 2.3272
beta_2 4.8283 0.5597 5.9577 3.7624 2.4529
beta_3 5.9929 0.5996 7.2474 4.8819 2.7491
delta_1 0.7152 0.1110 0.9616 0.5004 3.2261
delta_2 0.7456 0.0940 0.9281 0.5543 2.1497

[1] MH acceptance rate: 31.82%
[1] Log of Marginal Likelihood: -545.72
[1] DIC: 1060.56

The outputs from the quantregOR1 function are the following quantities: summary.bqrorOR1,
postMeanbeta, postMeandelta, postStdbeta, postStddelta, gammacp, acceptancerate, logMargLike,
dicQuant, ineffactor, betadraws, and deltadraws. A detailed description of each output is presented
in the bqror package help file. In the summary, we report the posterior mean, posterior standard
deviation, 95% posterior credible (or probability) interval, and the inefficiency factor of the quantile
regression coefficients bp and transformed cut-points dp. These quantities are presented in the last five
columns and labeled appropriately.

The posterior means of (bp, dp) are close to the true values used to generate the data with small
standard deviations. So, the quantregOR1 function is successful in recovering the true values of the
parameters. The inefficiency factor is computed from the MCMC samples using the batch-means
method (Greenberg 2012). They indicate the cost of working with correlated samples. For example, an
inefficiency factor of 3 implies that it takes 3 correlated draws to get one independent draw. As such,
low inefficiency factor indicates better mixing and a more efficient MCMC algorithm. Inefficiency
factor also bears a direct relationship with effective sample size, where the latter can be obtained as
the total number of (post burn-in) MCMC draws divided by the inefficiency factor (Siddhartha Chib
2012). The inefficiency factors for (bp, dp) are stored in the object modelOR1 of class bqrorOR1 and can
be obtained by calling modelORI$ineffactor.

The third last row displays the random-walk MH acceptance rate for dp, for which the preferred
acceptance rate is around 30 percent. The last two rows present the model comparison measures, the
logarithm of marginal likelihood and the DIC. The logarithm of marginal likelihood is computed using
the MCMC outputs from the complete and reduced runs as explained in Section 3, while the principle
for computing the DIC is presented in Gelman et al. (2013). For any two competing models at the
same quantile, the model with a higher (lower) marginal likelihood (DIC) provides a better model fit.

While the two model comparison measures are printed as part of the summary output, they can
also be called individually. For example, the logarithm of marginal likelihood can be obtained by
calling modelORI$logMargLike. Whereas, the DIC can be obtained by calling modelORI$dicQuant$DIC.
Two more quantities that are part of the object modelORI$dicQuant are effective number of parameters
denoted pD and the deviance computed at the posterior mean. They can be obtained by calling
modelORI$dicQuant$pd and modelORI$dicQuant$dev, respectively. Besides, post estimation, one may
also use the command modelORI$summary or summary.bqrorOR1(modelORI) to extract and print the
summary output.

covEffectOR1: The function covEffectOR1 computes the average covariate effect for different
outcomes of ORI model at a specified quantile, marginally of the parameters and the remaining
covariates. While a demonstration of this function is best understood in a real-life study and is
presented in the application section, here we present the mechanics behind the computation of average
covariate effect.

Suppose, we want to compute the average covariate effect when the l-th covariate {xi,l} is set to
the values a and b, denoted as {xa

i,l} and {xb
i,l}, respectively. We split the covariate and parameter

vectors as follows: xa
i = (xa

i,l , xi,�l), xb
i = (xb

i,l , xi,�l), and bp = (bp,l , bp,�l), where �l in the subscript
denotes all covariates (parameters) except the l-th covariate (parameter). We are interested in the
distribution of the difference {Pr(yi = j|xb

i,l)� Pr(yi = j|xa
i,l)} for 1  j  J, marginalized over {xi,�l}

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bqror


CONTRIBUTED RESEARCH ARTICLE 47

and (bp, dp), given the data y = (y1, · · · , yn)0. We marginalize the covariates using their empirical
distribution and the parameters based on the posterior distribution.

To obtain draws from the distribution {Pr(yi = j|xb
i,l)� Pr(yi = j|xa

i,l)}, we use the method of
composition (see Siddhartha Chib and Jeliazkov (2006), Rahman and Vossmeyer (2019), and Bresson,
Lacroix, and Rahman (2021), for additional details). In this process, we randomly select an individual,
extract the corresponding sequence of covariate values, draw a value (bp, dp) from the posterior
distributions, and evaluate {Pr(yi = j|xb

i , bp, dp)� Pr(yi = j|xa
i , bp, dp)}, where,

Pr(yi = j|xq
i , bp, dp)

= FAL(gp,j � xq
i,l bp,l � x0i,�l bp,�l)� FAL(gp,j�1 � xq

i,l bp,l � x0i,�l bp,�l),

for q = b, a and 1  j  J. This process is repeated for all remaining individuals and other MCMC
draws from the posterior distribution. Finally, the average covariate effect (ACE) for outcome j (for
1  j  J) is calculated as the mean of the difference in pointwise probabilities,

1
M

1
n

M

Â
m=1

n

Â
i=1

h
Pr(yi = j|xb

i , b
(m)
p , d

(m)
p )� Pr(yi = j|xa

i , b
(m)
p , d

(m)
p )

i
, (19)

where (b
(m)
p , d

(m)
p ) is an MCMC draw of (bp, dp), and M is the number of post burn-in MCMC draws.

ORII model: data, function, and outputs

Data Generation: The data generating process for the ORII model closely resembles that of ORI model.
In particular, 500 observations are generated for each value of p from the regression model: zi =
x0i b + ei, where b = (�4, 6, 5), (x2, x3) ⇠ U(0, 1) and ei ⇠ AL(0, s = 1, p) for i = 1, . . . , n. The
continuous values of z are classified based on the cut-points (0, 3) to generate 3 ordinal values for y,
the outcome variable. Once again, we choose p equal to 0.25, 0.50, and 0.75 to generate three samples
from the model, which are referred to as data25j3, data50j3, and data75j3, respectively. The last
two letters in the names of the data objects (i.e., j3) denote the number of unique outcomes in the y
variable.

quantregOR2: The function quantregOR2 implements Algorithm 2 and is the main function and
for estimating Bayesian quantile regression in ORII model i.e., an ordinal model with exactly 3
outcomes. In the code snippet below, we first read the data, define the required quantities, and then
call the quantregOR2 for estimating the quantile model. The function inputs are as follows: the ordinal
outcome variable (y), covariate matrix including a column of ones (xMat), prior mean (b0) and prior
covariance matrix (B0) for bp, prior shape (n0) and scale (d0) parameters for sp, second cut-point
(gammacp2), burn-in size (burn), post burn-in size (mcmc), quantile (p), auto correlation cutoff value
(accutoff), and the verbose option which when set to TRUE (FALSE) will (not) print the outputs. We
use a relatively diffuse prior distributions on (bp, sp) to allow the data to speak for itself.

library(�bqror�)
data("data25j3")
y <- data25j3$y
xMat <- data25j3$x
k <- dim(xMat)[2]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 10*diag(k)
n0 <- 5
d0 <- 8
modelORII <- quantregOR2(y = y, x = xMat, b0, B0, n0, d0, gammacp2 = 3,

burn = 1125, mcmc = 4500, p = 0.25, accutoff = 0.5,
verbose = TRUE)

[1] Summary of MCMC draws:

Post Mean Post Std Upper Credible Lower Credible Inef Factor
beta_1 -3.8900 0.4560 -3.0578 -4.8346 2.4784
beta_2 5.8257 0.5341 6.9263 4.8243 2.1231
beta_3 4.7194 0.5227 5.7502 3.7194 2.2693
sigma 0.8968 0.0763 1.0587 0.7626 2.4079

[1] Log of Marginal Likelihood: -404.34
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[1] DIC: 790.72

The outputs from the quantregOR2 function are the following: summary.bqrorOR2, postMeanbeta,
postMeansigma, postStdbeta, postStdsigma, logMargLike, dicQuant, ineffactor, betadraws, and
sigmadraws. A detailed description of each output is presented in the bqror package help file. Once
again, we summarize the MCMC draws by reporting the posterior mean, posterior standard deviation,
95% posterior credible (or probability) interval, and the inefficiency factor of the quantile regression
coefficients bp and scale parameter sp. The output also exhibits the logarithm of marginal likelihood
and the DIC for ORII model, where the former is computed using the Gibbs output as explain in
Section 3.

covEffectOR2: The function covEffectOR2 computes the average covariate effect for the 3 out-
comes of ORII model at a specified quantile, marginally of the parameters and remaining covariates.
The principle underlying the computation is analogous to that of ORI model and is explained below.
An implementation of the function is presented in the tax policy application.

Suppose, we are interested in computing the average covariate effect for the l-th covariate {xi,l}
for two different values a and b, and split the covariate and parameter vectors as: xa

i = (xa
i,l , xi,�l),

xb
i = (xb

i,l , xi,�l), b = (bp,l , bp,�l). We are interested in the distribution of the difference {Pr(yi =

j|xb
i,l) � Pr(yi = j|xa

i,l)} for 1  j  J = 3, marginalized over {xi,�l} and (bp, sp), given the data
y = (y1, · · · , yn)0. We again employ the method of composition i.e., randomly select an individual,
extract the corresponding sequence of covariate values, draw a value (bp, sp) from their posterior
distributions, and lastly evaluate {Pr(yi = j|xb

i , bp, sp)� Pr(yi = j|xa
i , bp, sp)}, where

Pr(yi = j|xq
i , bp, sp)

= FAL

✓gp,j � xq
i,l bp,l � x0i,�l bp,�l

sp

◆
� FAL

✓gp,j�1 � xq
i,l bp,l � x0i,�l bp,�l

sp

◆
,

for q = b, a, and 1  j  J = 3. This process is repeated for other individuals and the remaining Gibbs
draws to compute the ACE for outcome j (= 1, 2, 3) as below,

1
G

1
n

G

Â
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Â
i=1

h
Pr(yi = j|xb

i , b
(g)
p , s

(g)
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i , b
(g)
p , s

(g)
p )

i
, (20)

where (b
(g)
p , s

(g)
p ) is a Gibbs draw of (bp, sp) and G is the number of post burn-in Gibbs draws.

5 Applications

In this section, we consider the educational attainment and tax policy applications from Rahman
(2016) to demonstrate the real data applications of the proposed bqror package. While the educational
attainment study shows the implementation of ordinal quantile regression in ORI model, the tax policy
study highlights the use of ordinal quantile regression in ORII model. Data for both the applications
are included as a part of the bqror package.

Educational attainment

In this application, the goal is to study the effect of family background, individual level variables, and
age cohort on educational attainment of 3923 individuals using data from the National Longitudinal
Study of Youth (NLSY, 1979) (Jeliazkov, Graves, and Kutzbach 2008; Rahman 2016). The dependent vari-
able in the model, education degrees, has four categories: (i) Less than high school, (ii) High school degree,
(iii) Some college or associate’s degree, and (iv) College or graduate degree. A bar chart of the four categories
is presented in Figure 1. The independent variables in the model include intercept, square root of
family income, mother’s education, father’s education, mother’s working status, gender, race, indica-
tor variables to point whether the youth lived in an urban area or South at the age of 14, and three
indicator variables to indicate the individual’s age in 1979 (serves as a control for age cohort effects).

To estimate the Bayesian ordinal quantile model on educational attainment data, we load the bqror

package, prepare the required inputs and feed them into the quantregOR1 function. Specifically, we
specify the outcome variable, covariate matrix (with covariates in order as in Rahman 2016), prior
distributions for (bp, dp), burn-in size, number of post burn-in MCMC iterations, quantile value
(p = 0.5 for this illustration), and the values for tuning factor and autocorrelation cutoff.

library(�bqror�)
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Figure 1: Bar chart showing the different categories of educational attainment. The number of
responses (percentage) for each category are shown inside (at the top) of each bar.

data("Educational_Attainment")
data <- na.omit(Educational_Attainment)
data$fam_income_sqrt <- sqrt(data$fam_income)
cols <- c("mother_work","urban","south", "father_educ","mother_educ",

"fam_income_sqrt","female", "black","age_cohort_2","age_cohort_3",
"age_cohort_4")

x <- data[cols]
x$intercept <- 1
xMat <- x[,c(12,6,5,4,1,7,8,2,3,9,10,11)]
yOrd <- data$dep_edu_level
k <- dim(xMat)[2]
J <- dim(as.array(unique(yOrd)))[1]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 1*diag(k)
d0 <- array(0, dim = c(J-2, 1))
D0 <- 0.25*diag(J - 2)
p <- 0.5

EducAtt <- quantregOR1(y = yOrd, x = xMat, b0, B0, d0, D0, burn = 1125,
mcmc = 4500, p, tune=1, accutoff = 0.5, TRUE)

[1] Summary of MCMC draws:

Post Mean Post Std Upper Credible Lower Credible Inef Factor
intercept -3.2546 0.2175 -2.8350 -3.6798 2.3143
fam_income_sqrt 0.2788 0.0230 0.3254 0.2337 2.1396
mother_educ 0.1242 0.0190 0.1619 0.0878 1.9499
father_educ 0.1866 0.0154 0.2165 0.1578 2.3062
mother_work 0.0664 0.0821 0.2287 -0.0930 1.9349
female 0.3492 0.0786 0.5070 0.2022 1.9086
black 0.4413 0.0997 0.6400 0.2506 1.9270
urban -0.0777 0.0971 0.1104 -0.2712 1.9019
south 0.0842 0.0880 0.2529 -0.0895 1.9153
age_cohort_2 -0.0345 0.1192 0.1963 -0.2660 1.7502
age_cohort_3 -0.0426 0.1223 0.2033 -0.2849 1.9053
age_cohort_4 0.4938 0.1212 0.7256 0.2570 1.7512
delta_1 0.8988 0.0276 0.9534 0.8461 4.6186
delta_2 0.5481 0.0313 0.6146 0.4890 3.6003

[1] MH acceptance rate: 26.8%
[1] Log of Marginal Likelihood: -4923.48
[1] DIC: 9781.91
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Figure 2: Trace plots of the MCMC draws in the educational attainment study.

The posterior results1 from the MCMC draws are summarized above. In the summary, we report
the posterior mean and posterior standard deviation of the parameters (bp, dp), 95% posterior credible
interval, and the inefficiency factors. Additionally, the summary displays the MH acceptance rate of
dp, the logarithm of marginal likelihood, and the DIC.

mcmc <- 4500
burn <- round(0.25*mcmc)
nsim <- mcmc + burn
mcmcDraws <- cbind(t(EducAtt$betadraws), t(EducAtt$deltadraws))
color_scheme_set(�darkgray�)
bayesplot_theme_set(theme_minimal())
mcmc_trace(mcmcDraws[(burn+1):nsim, ], facet_args = list(ncol = 3))

Figure 2 presents the trace plots of the MCMC draws, which can be generated by loading the
bayesplot package and using the codes presented above. The purpose of trace plots is to show that
the Markov chains have converged to the joint posterior distribution, such as shown in Figure 2. The
idea is that the trace plots should show variation around a central value if the chain has converged,
rather than drift without settling down.

Next, we utilize the covEffectOR1 function to compute the average covariate effect for a $10,000
increase in family income on the four categories of educational attainment. In general, the calculation
of average covariate effect requires creation of either one or two new covariate matrices depending
whether the covariate is continuous or indicator (binary), respectively. Since income is a continuous

1The results reported here are slightly different from those presented in Rahman (2016). This difference in results,
aside from lesser number of MCMC draws, is due to a different approach in sampling from the GIG distribution.
Rahman (2016) employed the ratio of uniforms method to sample from the GIG distribution (Dagpunar 2007), while
the current paper utilizes the rgig function in the GIGrvg package that overcomes the disadvantages associated
with sampling using the ratio of uniforms method (see GIGrvg documentation for further details). Also, see
Devroye (2014) for an efficient sampling technique from a GIG distribution.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bayesplot
https://CRAN.R-project.org/package=GIGrvg
https://CRAN.R-project.org/package=GIGrvg


CONTRIBUTED RESEARCH ARTICLE 51

variable, a modified covariate matrix is created by adding $10,000 to each observation of family income.
This is xMod2 in the code below and the increased income variable corresponds to xb

i,l for i = 1, · · · , n
in Section 4.1. The second covariate matrix xMod1 (in the code below) is simply the covariate or
design matrix xMat; so with reference to Section 4.1, xa

i,l = xi,l for i = 1, · · · , n. When the covariate of
interest is an indicator variable, then xMod1 also requires modification as illustrated in the tax policy
application.

We now call the covEffectOR1 function and supply the inputs to get the results.

xMat1 <- xMat
xMat2 <- xMat
xMat2$fam_income_sqrt <- sqrt((xMat1$fam_income_sqrt)^2 + 10)
EducAttCE <- covEffectOR1(EducAtt, yOrd, xMat1, xMat2, p = 0.5, verbose = TRUE)

[1] Summary of Covariate Effect:

Covariate Effect
Category_1 -0.0314
Category_2 -0.0129
Category_3 0.0193
Category_4 0.0250

The results shows that at the 50th quantile and for a $10,000 increase in family income, the
probability of obtaining less than high school (high school degree) decreases by 3.14 (1.29) percent, while
the probability of achieving some college or associate’s degree (college or graduate degree) increases by 1.93
(2.50) percent.

Tax Policy

Here, the objective is to analyze the factors that affect public opinion on the proposal to raise federal
taxes for couples (individuals) earning more than $250,000 ($200,000) per year in the United States
(US). The proposal was designed to extend the Bush Tax cuts for the lower and middle income classes,
but restore higher rates for the richer class. Such a policy is considered pro-growth, since it is aimed
to promote economic growth in the US by augmenting consumption among the low-middle income
families. After extensive debate, the proposed policy received a two year extension and formed a part
of the “Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010”.

The data for the study was taken from the 2010-2012 American National Election Studies (ANES)
on the Evaluations of Government and Society Study 1 (EGSS 1) and contains 1,164 observations.
The dependent variable in the model, individual’s opinion on tax increase, has 3 categories: Oppose,
Neither favor nor oppose, and Favor (see Figure 3). The covariates included in the model are the intercept,
indicator variables for employment status, income above $75,000, bachelors’ degree, post-bachelors’
degree, computer ownership, cell phone ownership, and white race.

To estimate the quantile model on public opinion about federal tax increase, we load the bqror

package, prepare the data, and provide the inputs into the quantregOR2 function. Specifically, we
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Figure 3: Bar chart for public opinion on tax increase. The number of responses (percentage) for each
category are shown inside (at the top) of each bar.
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define the outcome variable, covariate matrix (with covariates in order as in Rahman 2016), specify the
prior distributions for (bp, sp), choose the second cut-off value, burn-in size, number of post burn-in
MCMC iterations, and values for quantile (p = 0.5 for this illustration) and autocorrelation cutoff.

library(bqror)
data("Policy_Opinion")
data <- na.omit(Policy_Opinion)
cols <- c("Intercept","EmpCat","IncomeCat","Bachelors","Post.Bachelors",

"Computers","CellPhone", "White")
x <- data[cols]
xMat <- x[,c(1,2,3,4,5,6,7,8)]
yOrd <- data$y
k <- dim(x)[2]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 = 1*diag(k)
n0 <- 5
d0 <- 8
FedTax <- quantregOR2(y = yOrd, x = xMat, b0, B0, n0, d0, gammacp2 = 3,

burn = 1125, mcmc = 4500, p = 0.5, accutoff = 0.5, TRUE)

[1] Summary of MCMC draws :

Post Mean Post Std Upper Credible Lower Credible Inef Factor
Intercept 2.0142 0.4553 2.9071 1.0959 1.4473
EmpCat 0.2496 0.2953 0.8294 -0.3270 1.6760
IncomeCat -0.5083 0.3323 0.1329 -1.1580 1.6700
Bachelors 0.0809 0.3744 0.8569 -0.6324 1.6726
Post.Bachelors 0.5082 0.4406 1.3964 -0.3435 1.5053
Computers 0.7167 0.3509 1.4078 0.0219 1.4975
CellPhone 0.8464 0.4027 1.6191 0.0444 1.4524
White 0.0627 0.3659 0.7579 -0.6502 1.4931
sigma 2.2205 0.1442 2.5300 1.9552 2.3161

[1] Log of Marginal Likelihood: -1174.11
[1] DIC: 2334.58

The results (see Footnote 1) from the MCMC draws are summarized above, where we report the
posterior mean, posterior standard deviation, 95% posterior credible interval, and the inefficiency
factor of the parameters (bp, sp). Additionally, the summary displays the logarithm of marginal
likelihood and the DIC. Figure 4 presents the trace plots of the Gibbs draws, which can be generated
by loading the bayesplot package and using the codes below.

mcmc <- 500
burn <- round(0.25*mcmc)
nsim <- mcmc + burn
mcmcDraws <- cbind(t(FedTax$betadraws), t(FedTax$sigmadraws))
color_scheme_set(�darkgray�)
bayesplot_theme_set(theme_minimal())
mcmc_trace(mcmcDraws[(burn+1):nsim, ], facet_args = list(ncol = 3))

Finally, we utilize the covEffectOR2 function to demonstrate the calculation of average covariate
effect within the ORII framework. Below, we compute the average covariate effect for computer
ownership (assume this is the l-th variable) on the 3 categories of public opinion about the tax policy.
Here, the covariate is an indicator variable since you may either own a computer (coded as 1) or
not (coded as 0). So, we need to create two modified covariate matrices. In the code snippet below,
the first matrix xMat1 and the second matrix xMat2 are created by replacing the column on computer
ownership with a column of zeros and ones, respectively. With reference to notations in Section 4.1
and Section 4.2, xa

i,l = 0 and xb
i,l = 1 for i = 1, · · · , n. We then call the covEffectOR2 function and

supply the inputs to get the results.

xMat1 <- xMat
xMat1$Computers <- 0
xMat2 <- xMat
xMat2$Computers <- 1
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Figure 4: Trace plots of the MCMC draws in the tax policy study.

FedTaxCE <- covEffectOR2(FedTax, yOrd, xMat1, xMat2, gammacp2 = 3, p = 0.5,
verbose = TRUE)

[1] Summary of Covariate Effect:

Covariate Effect
Category_1 -0.0396
Category_2 -0.0331
Category_3 0.0726

The result on covariate effect shows that at the 50th quantile, ownership of computer decreases
probability for the first category Oppose (Neither favor nor oppose) by 3.96 (3.31) percent, and increases
the probability for the third category Favor by 7.26 percent.

6 Conclusion

A wide class of applications in economics, finance, marketing, and the social sciences have dependent
variables which are ordinal in nature (i.e., they are discrete and ordered, and are characterized by
an underlying continuous variable). Modeling and analysis of such variables has been typically
confined to ordinal probit or ordinal logit models, which offer information on the average probability
of outcome variable given the covariates. However, a recently proposed method by Rahman (2016)
allows Bayesian quantile modeling of ordinal data and thus presents the tool for a more comprehensive
analysis and inference. The prevalence of ordinal responses in applications is well known and hence a
software package that allows Bayesian quantile analysis with ordinal data will be of immense interest
to applied researchers from different fields, including economics and statistics.

The current paper presents an implementation of the bqror package – the only package available
for estimation and inference of Bayesian quantile regression in ordinal models. The package offers
two MCMC algorithms for estimating ordinal quantile models. An ordinal quantile model with 3 or
more outcomes is estimated by a combination of Gibbs sampling and MH algorithm, while estimation
of an ordinal quantile model with exactly 3 outcomes utilizes a simpler and computationally faster
algorithm that relies solely on Gibbs sampling. For both forms of ordinal quantile models, the bqror

package also provides functions for calculating the covariate effects (for continuous as well as binary
regressors) and measures for model comparison – marginal likelihood and the DIC. The paper explains
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how to compute the marginal likelihood from the MCMC outputs and recommends its use over
the DIC for model comparison. Additionally, this paper demonstrates the usage of functions for
estimation and analysis of Bayesian quantile regression with ordinal data on simulation studies and
two applications related to educational attainment and tax policy. In the future, the current package
will be extended to include ordinal quantile regression with longitudinal data and variable selection
in ordinal quantile regression with cross section and/or longitudinal data.
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